cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129722 Number of 0's in even position in all Fibonacci binary words of length n. A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

0, 0, 1, 1, 5, 6, 19, 25, 65, 90, 210, 300, 654, 954, 1985, 2939, 5911, 8850, 17345, 26195, 50305, 76500, 144516, 221016, 411900, 632916, 1166209, 1799125, 3283145, 5082270, 9197455, 14279725, 25655489, 39935214, 71293590, 111228804, 197452746, 308681550
Offset: 0

Views

Author

Emeric Deutsch, May 13 2007

Keywords

Examples

			a(4)=5 because in 1110', 1111, 1101, 10'10', 10'11, 0110', 0111 and 0101 one has altogether five 0's in even position (marked by ').
		

Crossrefs

Programs

  • Maple
    G:=z^2/(1-z-z^2)^2/(1+z-z^2): Gser:=series(G,z=0,45): seq(coeff(Gser,z,n),n=0..42);
  • Mathematica
    CoefficientList[Series[x^2/((1 + x - x^2)*(1 - x - x^2)^2), {x,0,50}], x] (* G. C. Greubel, Mar 09 2017 *)
    LinearRecurrence[{1,4,-3,-4,1,1},{0,0,1,1,5,6},40] (* Harvey P. Dale, Apr 02 2018 *)
  • PARI
    x='x+O('x^50); concat([0,0], Vec(x^2/((1 + x - x^2)*(1 - x - x^2)^2))) \\ G. C. Greubel, Mar 09 2017

Formula

G.f.: z^2/( (1+z-z^2)*(1-z-z^2)^2 ).
a(2*n+1) = a(2*n) + a(2*n-1) (n>=1).
a(2*n+1) = A001871(n-1) (n>=1).
a(2*n) = A129720(2*n) = A001870(n-1).
a(n) = Sum_{ k=0..floor(n/2)} k*A129721(n,k).
a(n) = F(n)*(n+1)/5 + F(n+1)*(2*n - 5 + 5*(-1)^n)/20 where F = A000045. - Greg Dresden, Jan 01 2021