A129736 Primes of the form 4^k - 3^k.
7, 37, 14197, 17050729021, 332306984815842876487217260305275077
Offset: 1
Keywords
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..13
- Bogley, William A.; Williams, Gerald Efficient finite groups arising in the study of relative asphericity. Math. Z. 284, No. 1-2, 507-535 (2016).
- G. Everest et al., Primes generated by recurrence sequences, Amer. Math. Monthly, 114 (No. 5, 2007), 417-431.
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math., 3 (1892), 265-284.
Programs
-
GAP
Filtered(List([1..100], n -> 4^n-3^n), IsPrime); # Muniru A Asiru, Feb 09 2018
-
Magma
[a: n in [0..300] | IsPrime(a) where a is 4^n-3^n]; // Vincenzo Librandi, Nov 23 2010
-
Maple
select(isprime, [seq(4^n - 3^n, n=0..100)]); # Muniru A Asiru, Feb 09 2018
-
Mathematica
fQ[n_] := If[PrimeQ[4^n - 3^n], 4^n - 3^n, Nothing]; Array[fQ, 300] (* Robert G. Wilson v, Feb 12 2018 *)
-
PARI
lista(nn) = for(k=1, nn, if(isprime(p=4^k-3^k), print1(p", "))) \\ Altug Alkan, Mar 03 2018