A129762 Sum of all elements of n X n X n cubic array M[i,j,k] = Fibonacci[i+j+k-2].
1, 13, 104, 615, 3149, 14912, 67537, 297945, 1293832, 5564911, 23795465, 101383680, 431003105, 1829784725, 7761645928, 32906509335, 139466630773, 590979780544, 2503927125041, 10608105770625, 44940061502216
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (9,-26,24,6,-14,1,1).
Crossrefs
Programs
-
Magma
[Fibonacci(3*n+4) - 3*Fibonacci(2*n+4) + 3*Fibonacci(n+4) - 3: n in [1..30]]; // Vincenzo Librandi, Apr 21 2011
-
Mathematica
Table[ Sum[ Sum[ Sum[ Fibonacci[i+j+k-2], {i,1,n} ], {j,1,n} ], {k,1,n} ], {n,1,30} ] Table[ Fibonacci[3n+4] - 3*Fibonacci[2n+4] + 3*Fibonacci[n+4] - 3, {n,1,50} ] LinearRecurrence[{9,-26,24,6,-14,1,1},{1,13,104,615,3149,14912,67537},30] (* Harvey P. Dale, Aug 22 2021 *)
Formula
a(n) = Sum[ Sum[ Sum[ Fibonacci[i+j+k-2], {i,1,n} ], {j,1,n} ], {k,1,n} ].
a(n) = Fibonacci[3n+4] - 3*Fibonacci[2n+4] + 3*Fibonacci[n+4] - 3.
a(n) = 9*a(n-1) - 26*a(n-2) + 24*a(n-3) + 6*a(n-4) - 14*a(n-5) + a(n-6) + a(n-7). - Joerg Arndt, Apr 21 2011
G.f.: -x*(x^5 - 7*x^3 + 13*x^2 + 4*x + 1)/((x-1)*(x^2 - 3*x + 1)*(x^2 + x - 1)*(x^2 + 4*x - 1)). - Colin Barker, Aug 10 2012
Comments