cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A138258 Smallest positive integer m such that n divides [5^m/m] (=A129795(m)).

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 6, 7, 7, 7, 22, 2, 4, 6, 7, 13, 16, 7, 10, 7, 6, 31, 55, 7, 5, 4, 19, 6, 15, 7, 6, 17, 31, 16, 13, 7, 36, 10, 4, 7, 3, 6, 42, 31, 7, 55, 51, 13, 43, 26, 16, 4, 52, 19, 31, 13, 18, 15, 27, 7, 31, 6, 13, 17, 17, 31, 9, 16, 67, 13, 11, 7, 66, 36, 26, 18, 31, 4, 9, 13, 56, 61
Offset: 1

Views

Author

Max Alekseyev, Mar 09 2008

Keywords

Comments

This sequence is well-defined.

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    count:= 0: missing:= {$1..N}:
    Q:= ilcm(seq(i,i=1..N)):
    for m from 1 while count < N do
      v:= floor(5^m/m);
      r:= igcd(v,Q);
      d:= select(t -> r mod t = 0, missing);
      missing:= missing minus d;
      count:= count+nops(d);
      V[convert(d,list)]:= m;
    od:
    convert(V,list); # Robert Israel, Aug 27 2020
  • Mathematica
    a[n_]:=Module[{m=1},While[!Divisible[Floor[5^m/m],n],m++];m];Array[a,82] (* James C. McMahon, Jun 05 2025 *)

A060155 Table T(n,k) by antidiagonals of floor(n^k/k) [n,k >= 1].

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 2, 4, 4, 0, 4, 9, 8, 5, 0, 6, 20, 21, 12, 6, 0, 10, 48, 64, 41, 18, 7, 0, 18, 121, 204, 156, 72, 24, 8, 0, 32, 312, 682, 625, 324, 114, 32, 9, 0, 56, 820, 2340, 2604, 1555, 600, 170, 40, 10, 0, 102, 2187, 8192, 11160, 7776, 3361, 1024, 243, 50, 11
Offset: 1

Views

Author

Henry Bottomley, Mar 12 2001

Keywords

Examples

			T(5,3)=[5^3/3]=[125/3]=41.
Rows start:
  1,  0,  0,   0,   0, ...
  2,  2,  2,   4,   6, ...
  3,  4,  9,  20,  48, ...
  4,  8, 21,  64, 204, ...
  5, 12, 41, 156, 625, ...
		

Crossrefs

Columns include A000027, A007590.
Diagonals include A000169.

Formula

T(n, k) = (A051129(n, k)-A060154(n, k))/k.

A225586 Floor((5^n-1)/n).

Original entry on oeis.org

4, 12, 41, 156, 624, 2604, 11160, 48828, 217013, 976562, 4438920, 20345052, 93900240, 435965401, 2034505208, 9536743164, 44878791360, 211927625868, 1003867701480, 4768371582031, 22706531343005, 108372081409801, 518301258916440, 2483526865641276
Offset: 1

Views

Author

Vincenzo Librandi, May 30 2013

Keywords

Crossrefs

Programs

  • Magma
    [Floor((5^n-1)/n): n in [1..30]];
  • Mathematica
    Table[Floor[(5^n - 1) / n], {n, 30}] (* or *) Table[Quotient[5^n - 1, n], {n, 30}]

A246003 Floor(m^n/n) with n >= m >= 1.

Original entry on oeis.org

1, 0, 2, 0, 2, 9, 0, 4, 20, 64, 0, 6, 48, 204, 625, 0, 10, 121, 682, 2604, 7776, 0, 18, 312, 2340, 11160, 39990, 117649, 0, 32, 820, 8192, 48828, 209952, 720600, 2097152, 0, 56, 2187, 29127, 217013, 1119744, 4483734, 14913080, 43046721, 0, 102, 5904, 104857
Offset: 1

Views

Author

Vincenzo Librandi, Dec 11 2014

Keywords

Examples

			Triangle begins:
1;
0,  2;
0,  2,    9;
0,  4,   20,    64;
0,  6,   48,   204,    625;
0, 10,  121,   682,   2604,    7776;
0, 18,  312,  2340,  11160,   39990,  117649;
0, 32,  820,  8192,  48828,  209952,  720600,  2097152;
0, 56, 2187, 29127, 217013, 1119744, 4483734, 14913080, 43046721;
...
		

Crossrefs

Cf. A117142.
Cf. for the k-th column: A063524 (k=1), A000799(k=2), A092763(k=3), A129794(k=4), A129795(k=5), A129796 (k=6), A129797 (k=7), A129798 (k=8), A129799 (k=9).

Programs

  • Magma
    /* As triangle: */ [[Floor(m^n/n): m in [1..n]]: n in [1..10]];
    
  • Mathematica
    Table[Floor[m^n/n], {n, 1, 10}, {m, 1, n}]
  • PARI
    tabl(nn) = {for (n=1, nn, for (m=1, n, print1(m^n\n, ", ");); print(););} \\ Michel Marcus, Dec 12 2014
Showing 1-4 of 4 results.