A129805 Primes congruent to +-1 mod 18.
17, 19, 37, 53, 71, 73, 89, 107, 109, 127, 163, 179, 181, 197, 199, 233, 251, 269, 271, 307, 359, 379, 397, 431, 433, 449, 467, 487, 503, 521, 523, 541, 557, 577, 593, 613, 631, 647, 683, 701, 719, 739, 757, 773, 809, 811, 827, 829, 863, 881, 883, 919, 937, 953, 971, 991
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Emma Lehmer, On special primes, Pac. J. Math., 118 (1985), 471-478.
- J. H. Silverman and K. E. Stange. Amicable pairs and aliquot cycles for elliptic curves, arxiv:0912.1831 [math.NT], 2009.
Programs
-
Haskell
a129805 n = a129805_list !! (n-1) a129805_list = [x | x <- a056020_list, a010051 x == 1] -- Reinhard Zumkeller, Jan 07 2012
-
Magma
[ p: p in PrimesUpTo(1300) | p mod 18 in {1, 17} ]; // Vincenzo Librandi, Aug 14 2012
-
Mathematica
Union[Join[Select[Range[-1, 3000, 18], PrimeQ], Select[Range[1, 3000, 18], PrimeQ]]] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2012 *) Select[Prime[Range[4000]],MemberQ[{1,17},Mod[#,18]]&] (* Vincenzo Librandi, Aug 14 2012 *)
-
PARI
select( {is_A129805(n)=n^2%9==1&&isprime(n)}, primes(199)) \\ M. F. Hasler, Apr 16 2022
Comments