A129824 a(n) = Product_{k=0..n} (1 + binomial(n,k)).
2, 4, 12, 64, 700, 17424, 1053696, 160579584, 62856336636, 63812936890000, 168895157342195152, 1169048914836855865344, 21209591746609937928524800, 1010490883477487017627972550656, 126641164340871500483202065902080000, 41817338589698457759723104703370865147904
Offset: 0
Examples
a(4) = (1+1)(1+4)(1+6)(1+4)(1+1) = 2*5*7*5*2 = 700.
References
- H. W. Gould, A product analog of the binomial expansion, unpublished manuscript, Jun 03 2007.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..69
Programs
-
Magma
A129824:= func< n | (&*[1 + Binomial(n,k): k in [0..n]]) >; [A129824(n): n in [0..20]]; // G. C. Greubel, Apr 26 2024
-
Mathematica
Table[Product[1 + Binomial[n,k], {k,0,n}], {n,0,15}] (* Vaclav Kotesovec, Oct 27 2017 *)
-
PARI
{ a(n) = prod(k=0,n, 1 + binomial(n,k))} for(n=0,15,print1(a(n),", ")) \\ Paul D. Hanna, Oct 27 2017
-
SageMath
def A129824(n): return product(1 + binomial(n,k) for k in range(n+1)) [A129824(n) for n in range(21)] # G. C. Greubel, Apr 26 2024
Formula
a(n) = 2*A055612(n). - Reinhard Zumkeller, Jan 31 2015
a(n) ~ exp(n^2/2 + n - 1/12) * A^2 / (n^(n/2 + 1/3) * 2^((n-3)/2) * Pi^((n+1)/2)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 27 2017
Extensions
Corrected and extended by Vaclav Kotesovec, Oct 27 2017
Comments