A120668 Row sums of A129844.
1, 16, 110, 156, 399, 1240
Offset: 1
Extensions
a(6) corrected by Andrey Zabolotskiy, Jul 23 2024
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Fourth row polynomial (n=3): p(3,x)= 12+14*x+6*x^2+x^3 Triangle begins: {1}, {2, 1}, {5, 4, 1}, {12, 14, 6, 1}, {29, 44, 27, 8, 1}, {70, 131,104, 44, 10, 1}, {169, 376, 366, 200, 65, 12, 1}, {408, 1052, 1212, 810, 340, 90, 14, 1}, {985, 2888, 3842, 3032, 1555, 532, 119, 16, 1}, {2378, 7813, 11784, 10716, 6482, 2709, 784, 152, 18, 1}, {5741, 20892, 35223, 36248, 25235, 12432, 4396, 1104, 189, 20, 1}, The triangle (0, 2, 1/2, -1/2, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, ...) begins: 1 0, 1 0, 2, 1 0, 5, 4, 1 0, 12, 14, 6, 1 0, 29, 44, 27, 8, 1 - _Philippe Deléham_, Feb 19 2013
G := 1/(1-(x+2)*z-z^2): Gser := simplify(series(G, z = 0, 18)): for n from 0 to 15 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 15 do seq(coeff(P[n], x, j), j = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Aug 30 2015 T := (n,k) -> `if`(n=0,1,2^(n-k)*binomial(n,k)*hypergeom([(k-n)/2,(k-n+1)/2],[-n], -1)): seq(seq(simplify(T(n,k)),k=0..n),n=0..10); # Peter Luschny, Apr 25 2016 # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left. PMatrix(10, A000129); # Peter Luschny, Oct 19 2022
P[x_, 0] := 1; P[x_, 1] := 2 - x; P[x_, n_] := P[x, n] = (2 - x) P[x, n - 1] + P[x, n - 2]; Table[Abs@ CoefficientList[P[x, n], x], {n, 0, 10}] // Flatten (* Roger L. Bagula, Mar 24 2008, edited by Michael De Vlieger, Apr 25 2018 *)
{1}, {2, -1}, {4, -4, 1}, {6, -11, 6, -1}, {5, -20, 21, -8, 1}, {4, -34, 56, -36, 10, -1}, {3, -52, 125, -120,55, -12, 1}, {2, -73, 246, -329, 220, -78, 14, -1}, {1, -96, 440, -784, 714, -364, 105, -16, 1}, {0, -120, 730, -1679, 1992, -1364, 560, -136, 18, -1}, {-1, -144, 1140, -3304, 4949, -4356, 2379,-816, 171, -20, 1}, {-2, -167, 1694, -6069, 11210, -12297, 8554, -3875, 1140, -210, 22, -1}, {-3, -188, 2415, -10528, 23540, -31448, 27026, -15488, 5984, -1540, 253, -24, 1}
a[n_] := 2; b[n_] := -1; c[n_] := -1; T[n_, m_, d_] := If[ n == m, a[n], If[n == m - 1 || n == m + 1 || n ==m - 3 || n == m + 3, If[n == m - 1 &&m < d, b[m - 1], If[n == m + 1 && n < d, b[n - 1], If[n == m - 3 || n == m + 3, If[n == m - 3 && m == d, c[m - 3], If[n == m + 3 && n == d, c[n - 3], 0]]]]]]] MO[d_] := Table[If[TrueQ[T[n, m, d] == Null], 0, T[n, m, d]], {n, 1, d}, {m, 1, d}]; a1 = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[MO[n], x], x], {n, 1, 12}]]' Flatten[a1]
Comments