A130423 Main diagonal of array A[k,n] = n-th sum of 3 consecutive k-gonal numbers, k>2.
4, 14, 39, 88, 170, 294, 469, 704, 1008, 1390, 1859, 2424, 3094, 3878, 4785, 5824, 7004, 8334, 9823, 11480, 13314, 15334, 17549, 19968, 22600, 25454, 28539, 31864, 35438, 39270, 43369, 47744, 52404, 57358, 62615, 68184, 74074, 80294, 86853
Offset: 1
Examples
The array begins: k / A[k,n] 3.|.4.10.19.31..46..64..85.109.136.166....=A005448(n+1). 4.|.5.14.29..50..77.110.149.194.245.302...=A005918(n). 5.|.6.18.39..69.108.156.213.279.354.438...=A129863(n). 6.|.7.22.49..88.139.202.277.364.463.574... 7.|.8.26.59.107.170.248.341.449.572.710... 8.|.9.30.69.126.201.294.405.534.681.846...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Polygonal Number
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
I:=[4, 14, 39, 88]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 28 2012
-
Maple
P := proc(k,n) n*((k-2)*n-k+4)/2 ; end: A := proc(k,n) add( P(k,i),i=n..n+2) ; end: A130423 := proc(n) A(n+3,n) ; end: seq(A130423(n),n=0..40) ; # R. J. Mathar, Jun 14 2007
-
Mathematica
CoefficientList[Series[(4-2*x+7*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 28 2012 *) Table[n (3n^2-3n+8)/2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{4,14,39,88},40] (* Harvey P. Dale, Aug 15 2012 *)
Formula
a(n) = A[n+2,n] = P(k+2,n) + P(k+2,n+1) + P(k+2,n+2) where P(k,n) = k*((n-2)*k - (n-4))/2.
a(n) = n*(3*n^2-3*n+8)/2. G.f.: x*(4-2*x+7*x^2)/(1-x)^4. [Colin Barker, Apr 30 2012]
a(1)=4, a(2)=14, a(3)=39, a(4)=88, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Aug 15 2012
Extensions
More terms from R. J. Mathar, Jun 14 2007
Comments