A129890 a(n) = (2*n+2)!! - (2*n+1)!!.
1, 5, 33, 279, 2895, 35685, 509985, 8294895, 151335135, 3061162125, 68000295825, 1645756410375, 43105900812975, 1214871076343925, 36659590336994625, 1179297174137457375, 40288002704636061375, 1456700757237661060125
Offset: 0
Examples
2!! - 1!! = 2 - 1 = 1; 4!! - 3!! = 8 - 3 = 5; 6!! - 5!! = 48 - 15 = 33.
Links
- Selden Crary, Richard Diehl Martinez, and Michael Saunders, The Nu Class of Low-Degree-Truncated Rational Multifunctions. Ib. Integrals of Matern-correlation functions for all odd-half-integer class parameters, arXiv:1707.00705 [stat.ME], 2017, Table 2.
- Alexander Kreinin, Integer Sequences and Laplace Continued Fraction, Preprint 2016.
- Alexander Kreinin, Integer Sequences Connected to the Laplace Continued Fraction and Ramanujan's Identity, Journal of Integer Sequences, 19 (2016), #16.6.2.
- N. Ochiumi, On the total sum of number of nodes covering a given number of leaves in an unordered binary tree
- Donovan Young, A critical quartet for queuing couples, arXiv:2007.13868 [math.CO], 2020.
Programs
-
Maple
seq(doublefactorial(2*n+2)-doublefactorial(2*n+1),n=0..9); # Peter Luschny, Dec 01 2014
-
Mathematica
a[n_] := (2n+2)!! - (2n+1)!!; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 30 2018 *)
Formula
E.g.f.: 2/((1-2*x)^2)-1/[(1-2*x)*sqrt(1-2*x)]. - Sergei N. Gladkovskii, Dec 04 2011
a(n) = (2*n+1)*a(n-1) + A000165(n). - Philippe Deléham, Oct 28 2013
Conjecture: a(n) = (2*n + 2)*(2*n + 2)! * Sum_{k >= 1} (-1)^(k+1)/Product_{j = 0..n+1} (k + 2*j). - Peter Bala, Jul 06 2025
Extensions
New name from Peter Luschny, Dec 01 2014
Comments