cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A180048 Coefficient triangle of the denominators of the (n-th convergents to) the continued fraction 1/(w+2/(w+3/(w+4/... . Conjectured to equal unsigned version of A137286.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 5, 0, 1, 8, 0, 9, 0, 1, 0, 33, 0, 14, 0, 1, 48, 0, 87, 0, 20, 0, 1, 0, 279, 0, 185, 0, 27, 0, 1, 384, 0, 975, 0, 345, 0, 35, 0, 1, 0, 2895, 0, 2640, 0, 588, 0, 44, 0, 1, 3840, 0, 12645, 0, 6090, 0, 938, 0, 54, 0, 1, 0, 35685, 0, 41685, 0, 12558, 0, 1422, 0, 65
Offset: 0

Views

Author

Wouter Meeussen, Aug 08 2010

Keywords

Comments

Equivalence to the recurrence formula needs formal proof. This continued fraction converges to 0.525135276160981... for w=1. A conjecture by Ramanujan puts this equal to -1 + 1/(sqrt(e*Pi/2) - Sum_{k>=1} 1/(2k-1)!!).
From Alexander Kreinin, Oct 26 2015: (Start)
Let us denote the continued fraction by U(w).
Then it is easy to show that Mill's ratio, R(w) = (1 - Phi(w))/f(w), where Phi is the standard normal distribution function and f is the standard normal density function, satisfies R(w) = 1/(w + U(w)).
Indeed, R(w) = 1/(w+1/(w+2/(w+3/(w+... Then we find U(w) = 1/R(w) - w. It was proved in Alexander Kreinin (arXiv:1405.5852) that R(w+t) + Q(w, t) = exp(w*t + w^2/2)*R(t), where Q(w,t) = Sum_{k>=0} Sum_{m=0..k} q(k,m) * t^m * w^(k+1)/(k+1)!.
Substituting t=0, we obtain R(w) = exp(w^2/2)*sqrt(Pi/2) - Sum_{n>=0} w^(2n+1)/(2n+1)!!. If w=1 we obtain Ramanujan's formula. (End)

Examples

			The denominator of 1/(w+2/(w+3/(w+4/(w+5/(w+6/w))))) equals 48 + 87w^2 + 20w^4 + w^6.
From _Joerg Arndt_, Apr 20 2013: (Start)
Triangle begins
     1;
     0,     1;
     2,     0,     1;
     0,     5,     0,     1;
     8,     0,     9,     0,    1;
     0,    33,     0,    14,    0,   1;
    48,     0,    87,     0,   20,   0,   1;
     0,   279,     0,   185,    0,  27,   0,  1;
   384,     0,   975,     0,  345,   0,  35,  0,  1;
     0,  2895,     0,  2640,    0, 588,   0, 44,  0, 1;
  3840,     0, 12645,     0, 6090,   0, 938,  0, 54, 0, 1;
     0, 35685,     0, 41685,    0, ... (End)
		

Crossrefs

Programs

  • Mathematica
    Table[ CoefficientList[ Denominator[ Together[ Fold[ #2/(w+#1) &, Infinity, Reverse @ Table[ k, {k, 1, n} ] ] ] ], w ], {n, 16} ] (* or equivalently *) Clear[ p ];p[ 0 ]=1; p[ 1 ]=w; p[ n_ ]:=p[ n ]= w*p[ n-1 ] + n*p[ n-2 ]; Table[ CoefficientList[ p[ k ]//Expand, w ], {k,0,15} ]

Formula

p(0)=1; p(1)=w; p(n) = w*p(n-1) + n*p(n-2) (conjecture).
T(n,k) = T(n-1,k-1) + n*T(n-2,k), T(0,0) = 1, T(1,0) = 0, T(1,1) = 1. - Philippe Deléham, Oct 28 2013
sum_{k=0..n} T(n,k) = A000932(n). - Philippe Deléham, Oct 28 2013
T(2n,0) = A000165(n); T(2n+1,1) = A129890(n); T(2n+2,2) = A035101(n+2). - Philippe Deléham, Oct 28 2013

A035101 E.g.f. x*(c(x/2)-1)/(1-2*x), where c(x) = g.f. for Catalan numbers A000108.

Original entry on oeis.org

0, 1, 9, 87, 975, 12645, 187425, 3133935, 58437855, 1203216525, 27125492625, 664761133575, 17600023616175, 500706514833525, 15234653491682625, 493699195087473375, 16977671416936605375, 617528830880480644125, 23687738668934964248625
Offset: 1

Views

Author

Keywords

Comments

2nd column of triangular array A035342 whose first column is given by A001147(n), n >= 1. Recursion: a(n) = 2*n*a(n-1)+ A001147(n-1), n >= 2, a(1)=0.
a(n) gives the number of organically labeled forests (sets) with two rooted ordered trees with n non-root vertices. See the example a(3)=9 given in A035342. Organic labeling means that the vertex labels along the (unique) path from the root to any of the leaves (degree 1, non-root vertices) is increasing. - Wolfdieter Lang, Aug 07 2007
a(n), n>=2, enumerates unordered n-vertex forests composed of two plane (ordered) ternary (3-ary) trees with increasing vertex labeling. See A001147 (number of increasing ternary trees) and a D. Callan comment there. For a picture of some ternary trees see a W. Lang link under A001764.
a(n) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly 1 of the remaining n-1 chords are contained within the marked chord, see [Young]. - Donovan Young, Aug 11 2020

Examples

			a(2)=1 for the forest: {r1-1, r2-2} (with root labels r1 and r2). The order between the components of the forest is irrelevant (like for sets).
a(3)=9 increasing ternary 2-forest with n=3 vertices: there are three 2-forests (the one vertex tree together with any of the three different 2-vertex trees) each with three increasing labelings. - _Wolfdieter Lang_, Sep 14 2007
		

Crossrefs

Cf. A001147 (m=1 column of A035342). See a D. Callan comment there on the number of increasing ordered rooted trees on n+1 vertices.

Programs

  • Magma
    I:=[0,1,9]; [n le 3 select I[n] else - 2*(n-1)*(2*n-3)*Self(n-2)+(4*n-3)*Self(n-1): n in [1..30]]; // Vincenzo Librandi, Sep 12 2015
    
  • Maple
    F:= gfun:-rectoproc({(4*n^2+6*n+2)*a(n)+(-4*n-5)*a(n+1)+a(n+2),a(1)=0,a(2)=1,a(3)=9},a(n),remember):
    map(f, [$1..30]); # Robert Israel, Sep 11 2015
  • Mathematica
    Table[Round [n! (4^(n - 1) - Binomial[2 n, n]/2)/2^(n - 1)], {n, 1, 20}] (* Vincenzo Librandi, Sep 12 2015 *)
  • PARI
    a(n) = n!*(4^(n-1)-binomial(2*n, n)/2)/2^(n-1);
    vector(40, n, a(n)) \\ Altug Alkan, Oct 01 2015

Formula

a(n) = n!*A008549(n-1)/2^(n-1) = n!(4^(n-1)-binomial(2*n, n)/2)/2^(n-1).
a(n) = (2n-2)*a(n-1) + A129890(n-2). - Philippe Deléham, Oct 28 2013
a(n) = n!*2^(n-1) - A001147(n) = A002866(n) - A001147(n). - Peter Bala, Sep 11 2015
a(n) = -2*(n-1)*(2*n-3)*a(n-2)+(4*n-3)*a(n-1). - Robert Israel, Sep 11 2015

A336599 Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords are contained within the marked chord.

Original entry on oeis.org

1, 5, 1, 33, 9, 3, 279, 87, 39, 15, 2895, 975, 495, 255, 105, 35685, 12645, 6885, 4005, 2205, 945, 509985, 187425, 106785, 66465, 41265, 23625, 10395, 8294895, 3133935, 1843695, 1198575, 795375, 513135, 301455, 135135, 151335135, 58437855, 35213535, 23601375, 16343775, 11263455, 7453215, 4459455, 2027025
Offset: 1

Views

Author

Donovan Young, Jul 29 2020

Keywords

Examples

			Triangle begins:
     1;
     5,    1;
    33,    9,    3;
   279,   87,   39,  15;
  2895,  975,  495, 255, 105;
...
For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can only be (1,4) and it contains one other chord, namely (2,3), hence T(2,1) = 1.
		

Crossrefs

Row sums are n*A001147(n) for n > 0.
Leading diagonal is A001147(n-1) for n > 0.
The first column is A129890(n-1) for n > 0.
The second column is A035101(n+1) for n > 0.

Programs

  • Mathematica
    CoefficientList[Normal[Series[(Sqrt[1-2*y*x]-Sqrt[1-2*x])/(1-2*x)/(1-y),{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}]

Formula

E.g.f.: (sqrt(1 - 2*y*x) - sqrt(1 - 2*x))/(1 - 2*x)/(1 - y).

A135876 Square array, read by antidiagonals, where row n+1 is generated from row n by first removing terms at positions [(m+2)^2/4 - 1] for m>=0 and then taking partial sums, starting with all 1's in row 0.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 15, 8, 3, 1, 105, 48, 15, 4, 1, 945, 384, 105, 23, 5, 1, 10395, 3840, 945, 176, 33, 6, 1, 135135, 46080, 10395, 1689, 279, 44, 7, 1, 2027025, 645120, 135135, 19524, 2895, 400, 57, 8, 1, 34459425, 10321920, 2027025, 264207, 35685, 4384, 561
Offset: 0

Views

Author

Paul D. Hanna, Dec 14 2007

Keywords

Comments

This is the double factorial analog of Moessner's factorial array (A125714). Compare to triangle A135877 which is generated by a complementary process. A very interesting variant is square array A135878.

Examples

			Square array begins:
(1),(1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,1,(1),1,1,1,(1),1,1,1,1,(1),...;
(1),(2),3,(4),5,(6),7,8,(9),10,11,(12),13,14,15,(16),17,18,19,(20),...;
(3),(8),15,(23),33,(44),57,71,(86),103,121,(140),161,183,206,(230),..;
(15),(48),105,(176),279,(400),561,744,(950),1206,1489,(1800),2171,..;
(105),(384),945,(1689),2895,(4384),6555,9129,(12139),16161,20763,..;
(945),(3840),10395,(19524),35685,(56448),89055,129072,(177331),245778,...;
(10395),(46080),135135,(264207),509985,(836352),1381905,2071215,(2924172),.;
(135135),(645120),2027025,(4098240),8294895,(14026752),24137505,...; ...
where terms in parenthesis are removed before taking partial sums.
For example, to generate row 2 from row 1, remove terms at positions
{[(m+2)^2/4-1], m>=0} = [0,1,3,5,8,11,15,19,24,29,35,...] to obtain:
[3, 5, 7,8, 10,11, 13,14,15, 17,18,19, 21,22,23,24, 25,26,27,28, ...]
then take partial sums to get row 2:
[3, 8, 15,23, 33,44, 57,71,86, 103,121,140, 161,183,206,230, ...].
Repeating this process will generate all the rows of the triangle,
where column 0 will be the odd double factorials (A001147)
and column 1 will be the even double factorials (A000165).
		

Crossrefs

Cf. columns: A001147, A000165, A004041, A129890; variants: A135878, A125714.

Programs

  • PARI
    {T(n, k)=local(A=0, b=0, c=0, d=0); if(n==0, A=1, until(d>k, if(c==floor((b+2)^2/4)-1, b+=1, A+=T(n-1, c); d+=1); c+=1)); A}

Formula

T(n,0) = (2n)!/n!/2^n; T(n,1) = 2^n*n!; T(n,2) = (2n+1)!/n!/2^n; T(n,3) = A004041(n) = (2n+1)!/n!/2^n * Sum_{k=0..n} 1/(2k+1). T(n,4) = A129890(n) = 2^(n+1)*(n+1)! - (2n+1)!/n!/2^n = T(n+1,1)-T(n+1,0).

A232618 a(n) = (2n)!! mod (2n-1)!! where k!! = A006882(k).

Original entry on oeis.org

0, 2, 3, 69, 60, 4500, 104580, 186795, 13497435, 442245825, 13003053525, 64585694250, 3576632909850, 147580842959550, 5708173568847750, 27904470362393625, 2292043480058957625, 126842184377462428875, 6371504674680470700375, 312265748715684068930625
Offset: 1

Views

Author

Alex Ratushnyak, Nov 27 2013

Keywords

Comments

(2n)!! is the product of first n even numbers, (2n-1)!! is the product of first n odd numbers.

Examples

			a(3) = A006882(6) mod A006882(5) = 2*4*6 mod 1*3*5 = 48 mod 15 = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[(2n)!!,(2n-1)!!],{n,20}] (* Harvey P. Dale, Sep 23 2020 *)
  • Python
    o=e=1
    for n in range(1,99,2):
      o*=n
      e*=n+1
      print(str(e%o), end=',')

Formula

a(n) = A006882(2*n) mod A006882(2*n-1).

A160481 Row sums of the Beta triangle A160480.

Original entry on oeis.org

-1, -10, -264, -13392, -1111680, -137030400, -23500108800, -5351202662400, -1562069156659200, -568747270103040000, -252681700853514240000, -134539938778433126400000, -84573370199475510312960000, -61972704966344777143418880000, -52361960516341326660973363200000
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009, Sep 19 2012

Keywords

Comments

It is conjectured that the row sums of the Beta triangle depend on three different sequences. Two Maple algorithms are given. The first one gives the row sums according to the Beta triangle A160480 and the second one gives the row sums according to our conjecture.

Crossrefs

A160480 is the Beta triangle.
Row sum factors A120778, A000165 and A049606.

Programs

  • Maple
    nmax := 14; mmax := nmax: for n from 1 to nmax do BETA(n, n) := 0 end do: m := 1: for n from m+1 to nmax do BETA(n,m) := (2*n-3)^2*BETA(n-1, m)-(2*n-4)! od: for m from 2 to mmax do for n from m+1 to nmax do BETA(n, m) := (2*n-3)^2*BETA(n-1, m) - BETA(n-1, m-1) od: od: for n from 2 to nmax do s1(n) := 0: for m from 1 to n-1 do s1(n) := s1(n) + BETA(n, m) od: od: seq(s1(n), n=2..nmax);
    # End first program
    nmax := nmax; A120778 := proc(n): numer(sum(binomial(2*k1, k1)/(k1+1) / 4^k1, k1=0..n)) end proc: A000165 := proc(n): 2^n*n! end proc: A049606 := proc(n): denom(2^n/n!) end proc: for n from 2 to nmax do s2(n) := (-1)*A120778(n-2)*A000165(n-2)*A049606(n-1) end do: seq(s2(n), n=2..nmax);
    # End second program
  • Mathematica
    BETA[2, 1] = -1; BETA[n_, 1] := BETA[n, 1] = (2*n - 3)^2*BETA[n - 1, 1] - (2*n - 4)!; BETA[n_ /; n > 2, m_ /; m > 0] /; 1 <= m <= n := BETA[n, m] = (2*n - 3)^2*BETA[n - 1, m] - BETA[n - 1, m - 1]; BETA[, ] = 0;
    Table[Sum[BETA[n, m], {m, 1, n - 1}], {n, 2, 14}] (* Jean-François Alcover, Dec 13 2017 *)

Formula

Rowsums(n) = (-1)*A120778(n-2)*A000165(n-2)*A049606(n-1) for n >= 2.
Conjecture: a(n) = (2*n-3)! - 2^(2*n-3)*(n-1)!*(n-2)!, for n >= 2 (gives the first 13 terms). - Christopher P. Herzog, Nov 25 2014
Meijer's and Herzog's conjectures can also be written as: a(n) = -A129890(n-2)*A000165(n-2) = A009445(n-2) - A002474(n-2). - Peter Luschny, Dec 01 2014

Extensions

a(15)-a(16) from Stefano Spezia, Jun 28 2024

A232617 Product of first n odd numbers plus product of first n even numbers: (2n-1)!! + (2n)!!, where k!! = A006882(k).

Original entry on oeis.org

3, 11, 63, 489, 4785, 56475, 780255, 12348945, 220253985, 4370620275, 95498916975, 2278224696825, 58917607974225, 1641787169697675, 49040157044253375, 1563094742062478625, 52953322446161762625, 1899986948191060603875, 71977860935783603175375, 2870913642898706235455625
Offset: 1

Views

Author

Alex Ratushnyak, Nov 27 2013

Keywords

Examples

			a(3) = 1*3*5 + 2*4*6 = 15 + 48 = 63.
		

Crossrefs

Programs

  • Mathematica
    Table[n!!+(n+1)!!,{n,1,41,2}] (* Harvey P. Dale, Jan 22 2019 *)
  • PARI
    a(n)=prod(i=1,n,2*i-1)+prod(i=1,n,2*i) \\ Ralf Stephan, Nov 28 2013
  • Python
    o=e=1
    for n in range(1,99,2):
      o*=n
      e*=n+1
      print(str(e+o), end=',')
    

Formula

a(n) = A006882(2*n-1) + A006882(2*n).
a(n) = A001147(n) + A000165(n).
a(n) +(-4*n+3)*a(n-1) +2*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 23 2014

A202212 Triangle read by rows: T(n,k) (1 <= k <= n-1, n >= 2) = d(2*(n-k)-1)*(d(2*n-2)/d(2*(n-k)-2) - d(2*n-3)/d(2*(n-k)-3)), where d = A006882 is the double factorial function.

Original entry on oeis.org

1, 3, 5, 15, 27, 33, 105, 195, 261, 279, 945, 1785, 2475, 2925, 2895, 10395, 19845, 28035, 34425, 37935, 35685, 135135, 259875, 371385, 465255, 533925, 562275, 509985, 2027025, 3918915, 5644485, 7158375, 8390025, 9218475, 9401805, 8294895, 34459425, 66891825, 96891795, 123898005, 147093975, 165209625, 176067675, 175313565, 151335135, 654729075, 1274998725, 1854727875, 2385808425, 2857013775, 3252014325, 3545408475, 3693650625, 3609649575, 3061162125
Offset: 2

Views

Author

N. J. A. Sloane, Dec 14 2011

Keywords

Examples

			Triangle begins
1,
3, 5,
15, 27, 33,
105, 195, 261, 279,
945, 1785, 2475, 2925, 2895,
10395, 19845, 28035, 34425, 37935, 35685,
135135, 259875, 371385, 465255, 533925, 562275, 509985,
...
		

Crossrefs

Edges of triangle are A006882 and A129890.

Programs

  • Maple
    d:=doublefactorial;
    a:=(n,k)-> d(2*(n-k)-1)*(d(2*n-2)/d(2*(n-k)-2) - d(2*n-3)/d(2*(n-k)-3));
    f:=n->[seq(a(n,k),k=1..n-1)];
    for n from 1 to 10 do lprint(f(n)); od:
  • Mathematica
    a[n_, k_] := (2*(n-k)-1)!!*((2*n-2)!!/(2*(n-k)-2)!!-(2*n-3)!!/(2*(n-k)-3)!!); Table[a[n, k], {n, 2, 11}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)

A265649 Triangle of coefficients T(n,k) of polynomials p(n,x) = Sum_{k=0..n} T(n,k)*x^k where T(0,0) = 1, and T(n,k) = 0 for k < 0 or k > n, and T(n,k) = T(n-1,k-1) + (2*n-1+k)*T(n-1,k) for n > 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 3, 5, 1, 15, 33, 12, 1, 105, 279, 141, 22, 1, 945, 2895, 1830, 405, 35, 1, 10395, 35685, 26685, 7500, 930, 51, 1, 135135, 509985, 435960, 146685, 23310, 1848, 70, 1, 2027025, 8294895, 7921305, 3076290, 589575, 60270, 3318, 92, 1, 34459425, 151335135, 158799690, 69447105, 15457365, 1915515, 136584, 5526, 117, 1
Offset: 0

Views

Author

Werner Schulte, Dec 11 2015

Keywords

Comments

The polynomials p(n,x) satisfy the differential equation: x*y''' + (3*x+1)*y'' + (2*x+2)*y' - 2*n*y = 0 where y' = dy/dx (first derivative).
Appears to be the exponential Riordan array [1/sqrt(1 - 2x), 1/(sqrt(1 - 2x) - 1)]. [Barry, Example 1] - Eric M. Schmidt, Sep 23 2017

Examples

			The triangle T(n,k) begins:
n\k:        0        1        2        3       4      5     6   7  8
  0:        1
  1:        1        1
  2:        3        5        1
  3:       15       33       12        1
  4:      105      279      141       22       1
  5:      945     2895     1830      405      35      1
  6:    10395    35685    26685     7500     930     51     1
  7:   135135   509985   435960   146685   23310   1848    70   1
  8:  2027025  8294895  7921305  3076290  589575  60270  3318  92  1
  etc.
The polynomial corresponding to row 3 is p(3,x) = 15 + 33*x + 12*x^2 + x^3.
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> local j; 2^n*add((-1)^(k-j)*binomial(k, j)*pochhammer((j+1)/2, n), j=0..k) / k!: for n from 0 to 6 do seq(T(n, k), k=0..n) od;  # Peter Luschny, Mar 04 2024
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    rows = 10;
    R = RiordanArray[1/Sqrt[1 - 2 #]&, 1/Sqrt[1 - 2 #] - 1&, rows, True];
    R // Flatten (* Jean-François Alcover, Jul 20 2019 *)

Formula

Recurrence: p(0,x) = 1 and p(n+1,x) = (2*n+1+x)*p(n,x) + x*p'(n,x).
T(n,0) = A001147(n), T(n+1,1) = A129890(n), T(n+1,n) = A000326(n+1), and Sum_{k=0..n} (-1)^k*k!*T(n,k) = A000007(n).
Recurrence: k^2*(k+1)*T(n,k+1) = (2*n+2-2*k)*T(n,k-1)-k*(3*k-1)*T(n,k).
Conjecture: T(n,k) = 2^(n-k)*(n-k)!*binomial(n,k)*(Sum_{j=0..n-k} (-1/4)^j* binomial(2*j+k,j)*binomial(n,j+k)).
Conjecture: T(n,k) = (-1)^k*Sum_{j=0..n-1} A001497(n-1,j)*A021009(j+1,k).
T(n,k) = (Sum_{i=0..k} (-1)^(k-i) * binomial(k, i)*Product_{j=1..n} (2*j+i-1))/k!. - Werner Schulte, Mar 03 2024
T(n,k) = (2^n/k!)*(Sum_{j=0..k}(-1)^(k-j)*binomial(k,j)*Pochhammer((j + 1)/2, n)). - Peter Luschny, Mar 04 2024

A306184 a(n) = (2n+1)!! mod (2n)!! where k!! = A006882(k).

Original entry on oeis.org

1, 7, 9, 177, 2715, 42975, 91665, 3493665, 97345395, 2601636975, 70985324025, 57891366225, 9411029102475, 476966861546175, 20499289200014625, 847876038362978625, 35160445175104123875, 1487419121780448231375, 945654757149212735625, 357657177058846280240625
Offset: 1

Views

Author

Alex Ratushnyak, Jan 27 2019

Keywords

Comments

a(n) is divisible by A049606(n). - Robert Israel, Jan 28 2019

Examples

			a(3) = A006882(7) mod A006882(6) = (7*5*3) mod (6*4*2) = 105 mod 48 = 9.
		

Crossrefs

Programs

  • Maple
    f:= n -> doublefactorial(2*n+1) mod doublefactorial(2*n):
    map(f, [$1..40]); # Robert Israel, Jan 28 2019
  • Mathematica
    Mod[#[[2]],#[[1]]]&/@Partition[Range[2,42]!!,2] (* Harvey P. Dale, May 29 2025 *)
  • Python
    o=e=1
    for n in range(2, 99, 2):
      o*=n+1
      e*=n
      print(o%e, end=', ')

Formula

a(n) = A006882(2*n+1) mod A006882(2*n).
Showing 1-10 of 12 results. Next