A180048 Coefficient triangle of the denominators of the (n-th convergents to) the continued fraction 1/(w+2/(w+3/(w+4/... . Conjectured to equal unsigned version of A137286.
1, 0, 1, 2, 0, 1, 0, 5, 0, 1, 8, 0, 9, 0, 1, 0, 33, 0, 14, 0, 1, 48, 0, 87, 0, 20, 0, 1, 0, 279, 0, 185, 0, 27, 0, 1, 384, 0, 975, 0, 345, 0, 35, 0, 1, 0, 2895, 0, 2640, 0, 588, 0, 44, 0, 1, 3840, 0, 12645, 0, 6090, 0, 938, 0, 54, 0, 1, 0, 35685, 0, 41685, 0, 12558, 0, 1422, 0, 65
Offset: 0
Examples
The denominator of 1/(w+2/(w+3/(w+4/(w+5/(w+6/w))))) equals 48 + 87w^2 + 20w^4 + w^6. From _Joerg Arndt_, Apr 20 2013: (Start) Triangle begins 1; 0, 1; 2, 0, 1; 0, 5, 0, 1; 8, 0, 9, 0, 1; 0, 33, 0, 14, 0, 1; 48, 0, 87, 0, 20, 0, 1; 0, 279, 0, 185, 0, 27, 0, 1; 384, 0, 975, 0, 345, 0, 35, 0, 1; 0, 2895, 0, 2640, 0, 588, 0, 44, 0, 1; 3840, 0, 12645, 0, 6090, 0, 938, 0, 54, 0, 1; 0, 35685, 0, 41685, 0, ... (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 75 rows, flattened
- Authors?, Hungarian discussion forum
- Alexander Kreinin, Combinatorial Properties of Mills' Ratio, arXiv:1405.5852 [math.CO], 2014. See Table 3.
- Alexander Kreinin, Integer Sequences and Laplace Continued Fraction, preprint, 2016.
- Alexander Kreinin, Integer Sequences Connected to the Laplace Continued Fraction and Ramanujan's Identity, Journal of Integer Sequences 19 (2016), Article 16.6.2.
Programs
-
Mathematica
Table[ CoefficientList[ Denominator[ Together[ Fold[ #2/(w+#1) &, Infinity, Reverse @ Table[ k, {k, 1, n} ] ] ] ], w ], {n, 16} ] (* or equivalently *) Clear[ p ];p[ 0 ]=1; p[ 1 ]=w; p[ n_ ]:=p[ n ]= w*p[ n-1 ] + n*p[ n-2 ]; Table[ CoefficientList[ p[ k ]//Expand, w ], {k,0,15} ]
Formula
p(0)=1; p(1)=w; p(n) = w*p(n-1) + n*p(n-2) (conjecture).
T(n,k) = T(n-1,k-1) + n*T(n-2,k), T(0,0) = 1, T(1,0) = 0, T(1,1) = 1. - Philippe Deléham, Oct 28 2013
sum_{k=0..n} T(n,k) = A000932(n). - Philippe Deléham, Oct 28 2013
T(2n,0) = A000165(n); T(2n+1,1) = A129890(n); T(2n+2,2) = A035101(n+2). - Philippe Deléham, Oct 28 2013
Comments