cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A035119 Related to A045720 and A035101.

Original entry on oeis.org

0, 0, 1, 18, 285, 4680, 82845, 1595790, 33453945, 760970700, 18705542625, 494764058250, 14023390706325, 424278354099600, 13653335491921125, 465794724725079750, 16796514560465264625, 638448710154151396500
Offset: 1

Views

Author

Keywords

Comments

3rd column of triangular array A035342. a(n) = (2*n+1)*a(n-1) + A035101(n-1), n >= 3, a(2)=0.
a(n) gives the number of organically labeled forests (sets) with three rooted ordered trees with n non-root vertices. Organic labeling means that the vertex labels along the (unique) path from the root to any of the leaves (degree 1, non-root vertices) is increasing. W. Lang, Aug 07 2007.
a(n), n>=3, enumerates unordered n-vertex forests composed of three plane (ordered) ternary (3-ary) trees with increasing vertex labeling. See A001147 (number of increasing ternary trees) and a D. Callan comment there. For a picture of some ternary trees see a W. Lang link under A001764.

Examples

			a(4)=18 for the number of forests (sets) of three increasing labeled rooted trees with 4 non-root vertices and three root labels 0: [(0,4),{(0,1),(0,2)},(0,3)]; [(0,4),{(0,2),(0,1)},(0,3)]; [(0,4),{(0,1),(0,3)},(0,2)]; [(0,4),{(0,3),(0,1)},(0,2)]; [(0,4),{(0,2),(0,3)},(0,1)]; [(0,4),{(0,3),(0,2)},(0,1)]; [(0,4),(0,1,2),(0,3)]; [(0,4),(0,1,3),(0,2)]; [(0,4),(0,2,3),(0,1)]; [{(0,4),(0,1)},(0,2),(0,3)]; [{(0,1),(0,4)},(0,2),(0,3)]; [{(0,4),(0,2)},(0,1),(0,3)]; [{(0,2),(0,4)},(0,1),(0,3)]; [{(0,4),(0,3)},(0,1),(0,2)]; [{(0,3),(0,4)},(0,1),(0,2)]; [(0,1,4),(0,2),(0,3)]; [(0,2,4),(0,1),(0,3)]; [(0,3,4),(0,1),(0,2)].
a(4)=18 increasing ternary 3-forest with n=4 vertices: there are three 3-forests (two one vertex trees together with any of the three different 2-vertex trees) each with six increasing labelings. W. Lang, Sep 14 2007.
		

Crossrefs

Formula

a(n) = n!*((n+2)*binomial(2*n, n)/4-3*2^(2*n-3))/(3*2^(n-2)); a(n)= n!*A045720(n-3)/(3*2^(n-2)), n >= 3; E.g.f. (4/3)*(x*c(x/2)*(1-2*x)^(-1/2)/2)^3 = (2*x/3)*((1-x/2)*c(x/2)-1)/(1-2*x)^(3/2), where c(x) = g.f. for Catalan numbers A000108, a(0) := 0.

A035342 The convolution matrix of the double factorial of odd numbers (A001147).

Original entry on oeis.org

1, 3, 1, 15, 9, 1, 105, 87, 18, 1, 945, 975, 285, 30, 1, 10395, 12645, 4680, 705, 45, 1, 135135, 187425, 82845, 15960, 1470, 63, 1, 2027025, 3133935, 1595790, 370125, 43890, 2730, 84, 1, 34459425, 58437855, 33453945, 8998290
Offset: 1

Views

Author

Keywords

Comments

Previous name was: A triangle of numbers related to the triangle A035324; generalization of Stirling numbers of second kind A008277 and Lah numbers A008297.
If one replaces in the recurrence the '2' by '0', resp. '1', one obtains the Lah-number, resp. Stirling-number of 2nd kind, triangle A008297, resp. A008277.
The product of two lower triangular Jabotinsky matrices (see A039692 for the Knuth 1992 reference) is again such a Jabotinsky matrix: J(n,m) = Sum_{j=m..n} J1(n,j)*J2(j,m). The e.g.f.s of the first columns of these triangular matrices are composed in the reversed order: f(x)=f2(f1(x)). With f1(x)=-(log(1-2*x))/2 for J1(n,m)=|A039683(n,m)| and f2(x)=exp(x)-1 for J2(n,m)=A008277(n,m) one has therefore f2(f1(x))=1/sqrt(1-2*x) - 1 = f(x) for J(n,m)=a(n,m). This proves the matrix product given below. The m-th column of a Jabotinsky matrix J(n,m) has e.g.f. (f(x)^m)/m!, m>=1.
a(n,m) gives the number of forests with m rooted ordered trees with n non-root vertices labeled in an organic way. Organic labeling means that the vertex labels along the (unique) path from the root with label 0 to any leaf (non-root vertex of degree 1) is increasing. Proof: first for m=1 then for m>=2 using the recurrence relation for a(n,m) given below. - Wolfdieter Lang, Aug 07 2007
Also the Bell transform of A001147(n+1) (adding 1,0,0,... as column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Matrix begins:
    1;
    3,   1;
   15,   9,   1;
  105,  87,  18,   1;
  945, 975, 285,  30,   1;
  ...
Combinatoric meaning of a(3,2)=9: The nine increasing path sequences for the three rooted ordered trees with leaves labeled with 1,2,3 and the root labels 0 are: {(0,3),[(0,1),(0,2)]}; {(0,3),[(0,2),(0,1)]}; {(0,3),(0,1,2)}; {(0,1),[(0,3),(0,2)]}; [(0,1),[(0,2),(0,3)]]; [(0,2),[(0,1),(0,3)]]; {(0,2),[(0,3),(0,1)]}; {(0,1),(0,2,3)}; {(0,2),(0,1,3)}.
		

Crossrefs

The column sequences are A001147, A035101, A035119, ...
Row sums: A049118(n), n >= 1.

Programs

  • Haskell
    a035342 n k = a035342_tabl !! (n-1) !! (k-1)
    a035342_row n = a035342_tabl !! (n-1)
    a035342_tabl = map fst $ iterate (\(xs, i) -> (zipWith (+)
       ([0] ++ xs) $ zipWith (*) [i..] (xs ++ [0]), i + 2)) ([1], 3)
    -- Reinhard Zumkeller, Mar 12 2014
    
  • Maple
    T := (n,k) -> 2^(k-n)*hypergeom([k-n,k+1],[k-2*n+1],2)*GAMMA(2*n-k)/
    (GAMMA(k)*GAMMA(n-k+1)); for n from 1 to 9 do seq(simplify(T(n,k)),k=1..n) od; # Peter Luschny, Mar 31 2015
    T := (n, k) -> local j; 2^n*add((-1)^(k-j)*binomial(k, j)*pochhammer(j/2, n), j = 1..k)/k!: for n from 1 to 6 do seq(T(n, k), k=1..n) od;  # Peter Luschny, Mar 04 2024
  • Mathematica
    a[n_, k_] := 2^(n+k)*n!/(4^n*n*k!)*Sum[(j+k)*2^(j)*Binomial[j + k - 1, k-1]*Binomial[2*n - j - k - 1, n-1], {j, 0, n-k}]; Flatten[Table[a[n,k], {n, 1, 9}, {k, 1, n}] ] [[1 ;; 40]] (* Jean-François Alcover, Jun 01 2011, after Vladimir Kruchinin *)
  • Maxima
    a(n,k):=2^(n+k)*n!/(4^n*n*k!)*sum((j+k)*2^(j)*binomial(j+k-1,k-1)*binomial(2*n-j-k-1,n-1),j,0,n-k); /* Vladimir Kruchinin, Mar 30 2011 */
    
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    print(bell_matrix(lambda n: A001147(n+1), 9)) # Peter Luschny, Jan 19 2016

Formula

a(n, m) = Sum_{j=m..n} |A039683(n, j)|*S2(j, m) (matrix product), with S2(j, m) := A008277(j, m) (Stirling2 triangle). Priv. comm. to Wolfdieter Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the comment on products of Jabotinsky matrices.
a(n, m) = n!*A035324(n, m)/(m!*2^(n-m)), n >= m >= 1; a(n+1, m)= (2*n+m)*a(n, m)+a(n, m-1); a(n, m) := 0, n
E.g.f. of m-th column: ((x*c(x/2)/sqrt(1-2*x))^m)/m!, where c(x) = g.f. for Catalan numbers A000108.
From Vladimir Kruchinin, Mar 30 2011: (Start)
G.f. (1/sqrt(1-2*x) - 1)^k = Sum_{n>=k} (k!/n!)*a(n,k)*x^n.
a(n,k) = 2^(n+k) * n! / (4^n*n*k!) * Sum_{j=0..n-k} (j+k) * 2^(j) * binomial(j+k-1,k-1) * binomial(2*n-j-k-1,n-1). (End)
From Peter Bala, Nov 25 2011: (Start)
E.g.f.: G(x,t) = exp(t*A(x)) = 1 + t*x + (3*t + t^2)*x^2/2! + (15*t + 9*t^2 + t^3)*x^3/3! + ..., where A(x) = -1 + 1/sqrt(1-2*x) satisfies the autonomous differential equation A'(x) = (1+A(x))^3.
The generating function G(x,t) satisfies the partial differential equation t*(dG/dt+G) = (1-2*x)*dG/dx, from which follows the recurrence given above.
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^3*d/dx. Cf. A008277 (D = (1+x)*d/dx), A105278 (D = (1+x)^2*d/dx), A035469 (D = (1+x)^4*d/dx) and A049029 (D = (1+x)^5*d/dx). (End)
The n-th row polynomial R(n,x) is given by the Dobinski-type formula R(n,x) = exp(-x)*Sum_{k>=1} k*(k+2)*...*(k+2*n-2)*x^k/k!. - Peter Bala, Jun 22 2014
T(n,k) = 2^(k-n)*hypergeom([k-n,k+1],[k-2*n+1],2)*Gamma(2*n-k)/(Gamma(k)*Gamma(n-k+1)). - Peter Luschny, Mar 31 2015
T(n,k) = 2^n*Sum_{j=1..k} ((-1)^(k-j)*binomial(k, j)*Pochhammer(j/2, n)) / k!. - Peter Luschny, Mar 04 2024

Extensions

Simpler name from Peter Luschny, Mar 31 2015

A180048 Coefficient triangle of the denominators of the (n-th convergents to) the continued fraction 1/(w+2/(w+3/(w+4/... . Conjectured to equal unsigned version of A137286.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 5, 0, 1, 8, 0, 9, 0, 1, 0, 33, 0, 14, 0, 1, 48, 0, 87, 0, 20, 0, 1, 0, 279, 0, 185, 0, 27, 0, 1, 384, 0, 975, 0, 345, 0, 35, 0, 1, 0, 2895, 0, 2640, 0, 588, 0, 44, 0, 1, 3840, 0, 12645, 0, 6090, 0, 938, 0, 54, 0, 1, 0, 35685, 0, 41685, 0, 12558, 0, 1422, 0, 65
Offset: 0

Author

Wouter Meeussen, Aug 08 2010

Keywords

Comments

Equivalence to the recurrence formula needs formal proof. This continued fraction converges to 0.525135276160981... for w=1. A conjecture by Ramanujan puts this equal to -1 + 1/(sqrt(e*Pi/2) - Sum_{k>=1} 1/(2k-1)!!).
From Alexander Kreinin, Oct 26 2015: (Start)
Let us denote the continued fraction by U(w).
Then it is easy to show that Mill's ratio, R(w) = (1 - Phi(w))/f(w), where Phi is the standard normal distribution function and f is the standard normal density function, satisfies R(w) = 1/(w + U(w)).
Indeed, R(w) = 1/(w+1/(w+2/(w+3/(w+... Then we find U(w) = 1/R(w) - w. It was proved in Alexander Kreinin (arXiv:1405.5852) that R(w+t) + Q(w, t) = exp(w*t + w^2/2)*R(t), where Q(w,t) = Sum_{k>=0} Sum_{m=0..k} q(k,m) * t^m * w^(k+1)/(k+1)!.
Substituting t=0, we obtain R(w) = exp(w^2/2)*sqrt(Pi/2) - Sum_{n>=0} w^(2n+1)/(2n+1)!!. If w=1 we obtain Ramanujan's formula. (End)

Examples

			The denominator of 1/(w+2/(w+3/(w+4/(w+5/(w+6/w))))) equals 48 + 87w^2 + 20w^4 + w^6.
From _Joerg Arndt_, Apr 20 2013: (Start)
Triangle begins
     1;
     0,     1;
     2,     0,     1;
     0,     5,     0,     1;
     8,     0,     9,     0,    1;
     0,    33,     0,    14,    0,   1;
    48,     0,    87,     0,   20,   0,   1;
     0,   279,     0,   185,    0,  27,   0,  1;
   384,     0,   975,     0,  345,   0,  35,  0,  1;
     0,  2895,     0,  2640,    0, 588,   0, 44,  0, 1;
  3840,     0, 12645,     0, 6090,   0, 938,  0, 54, 0, 1;
     0, 35685,     0, 41685,    0, ... (End)
		

Crossrefs

Programs

  • Mathematica
    Table[ CoefficientList[ Denominator[ Together[ Fold[ #2/(w+#1) &, Infinity, Reverse @ Table[ k, {k, 1, n} ] ] ] ], w ], {n, 16} ] (* or equivalently *) Clear[ p ];p[ 0 ]=1; p[ 1 ]=w; p[ n_ ]:=p[ n ]= w*p[ n-1 ] + n*p[ n-2 ]; Table[ CoefficientList[ p[ k ]//Expand, w ], {k,0,15} ]

Formula

p(0)=1; p(1)=w; p(n) = w*p(n-1) + n*p(n-2) (conjecture).
T(n,k) = T(n-1,k-1) + n*T(n-2,k), T(0,0) = 1, T(1,0) = 0, T(1,1) = 1. - Philippe Deléham, Oct 28 2013
sum_{k=0..n} T(n,k) = A000932(n). - Philippe Deléham, Oct 28 2013
T(2n,0) = A000165(n); T(2n+1,1) = A129890(n); T(2n+2,2) = A035101(n+2). - Philippe Deléham, Oct 28 2013

A336599 Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords are contained within the marked chord.

Original entry on oeis.org

1, 5, 1, 33, 9, 3, 279, 87, 39, 15, 2895, 975, 495, 255, 105, 35685, 12645, 6885, 4005, 2205, 945, 509985, 187425, 106785, 66465, 41265, 23625, 10395, 8294895, 3133935, 1843695, 1198575, 795375, 513135, 301455, 135135, 151335135, 58437855, 35213535, 23601375, 16343775, 11263455, 7453215, 4459455, 2027025
Offset: 1

Author

Donovan Young, Jul 29 2020

Keywords

Examples

			Triangle begins:
     1;
     5,    1;
    33,    9,    3;
   279,   87,   39,  15;
  2895,  975,  495, 255, 105;
...
For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can only be (1,4) and it contains one other chord, namely (2,3), hence T(2,1) = 1.
		

Crossrefs

Row sums are n*A001147(n) for n > 0.
Leading diagonal is A001147(n-1) for n > 0.
The first column is A129890(n-1) for n > 0.
The second column is A035101(n+1) for n > 0.

Programs

  • Mathematica
    CoefficientList[Normal[Series[(Sqrt[1-2*y*x]-Sqrt[1-2*x])/(1-2*x)/(1-y),{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}]

Formula

E.g.f.: (sqrt(1 - 2*y*x) - sqrt(1 - 2*x))/(1 - 2*x)/(1 - y).

A263384 Fourth column of the matrix of polynomial coefficients of the rational approximation to Mill's ratio.

Original entry on oeis.org

1, 14, 185, 2640, 41685, 729330, 14073885, 297693900, 6859400625, 171172905750, 4601737965825, 132643472761800, 4082080279402125, 133614981594344250, 4635763624512145125, 169957871025837394500
Offset: 0

Author

Alexander Kreinin, Oct 16 2015

Keywords

Comments

Rational approximations, Q_{k-1}(t)/P_k(t), to Mill's ratio, R(t)=(1-Phi(t))/f(t), where Phi(t) is the standard normal distribution function and f(t) is the standard normal density, were discovered by Laplace, who computed the first four polynomials. Thirty years later, Jacobi derived recurrence relations for these polynomials and analyzed some of their analytical properties. The coefficients q_{k,m} of Q_k(t) form a matrix, of which this is the fourth column. The double generating function for the polynomials Q_k(t) is computed in A. Kreinin (see Links). The coefficients q_{k,m} are described by the triangular array A180048.

Crossrefs

Columns of the matrix [q_{k,m}] include: A000165 (m=1), A129890 (m=2), A035101 (m=3), this sequence (m=4).
Cf. A180048.

Programs

  • Mathematica
    Table[((2 n + 6)!! - 3 (2 n + 5)!! + (2 n + 3)!!)/6, {n, 0, 12}] (* Michael De Vlieger, Oct 27 2015 *)
  • PARI
    a(n)=(prod(k=1, n+3, 2*k)-3*prod(k=1, n+3,(2*k-1))+prod(k=1, n+2, 2*k-1))/6;
    vector(20, n, a(n-1)) \\ Altug Alkan, Oct 16 2015

Formula

a(n) = ((2*n+6)!! - 3*(2*n+5)!! + (2*n+3)!!)/6, n>=0.
Showing 1-5 of 5 results.