A129890
a(n) = (2*n+2)!! - (2*n+1)!!.
Original entry on oeis.org
1, 5, 33, 279, 2895, 35685, 509985, 8294895, 151335135, 3061162125, 68000295825, 1645756410375, 43105900812975, 1214871076343925, 36659590336994625, 1179297174137457375, 40288002704636061375, 1456700757237661060125
Offset: 0
2!! - 1!! = 2 - 1 = 1;
4!! - 3!! = 8 - 3 = 5;
6!! - 5!! = 48 - 15 = 33.
- Selden Crary, Richard Diehl Martinez, and Michael Saunders, The Nu Class of Low-Degree-Truncated Rational Multifunctions. Ib. Integrals of Matern-correlation functions for all odd-half-integer class parameters, arXiv:1707.00705 [stat.ME], 2017, Table 2.
- Alexander Kreinin, Integer Sequences and Laplace Continued Fraction, Preprint 2016.
- Alexander Kreinin, Integer Sequences Connected to the Laplace Continued Fraction and Ramanujan's Identity, Journal of Integer Sequences, 19 (2016), #16.6.2.
- N. Ochiumi, On the total sum of number of nodes covering a given number of leaves in an unordered binary tree
- Donovan Young, A critical quartet for queuing couples, arXiv:2007.13868 [math.CO], 2020.
-
seq(doublefactorial(2*n+2)-doublefactorial(2*n+1),n=0..9); # Peter Luschny, Dec 01 2014
-
a[n_] := (2n+2)!! - (2n+1)!!;
Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 30 2018 *)
A035101
E.g.f. x*(c(x/2)-1)/(1-2*x), where c(x) = g.f. for Catalan numbers A000108.
Original entry on oeis.org
0, 1, 9, 87, 975, 12645, 187425, 3133935, 58437855, 1203216525, 27125492625, 664761133575, 17600023616175, 500706514833525, 15234653491682625, 493699195087473375, 16977671416936605375, 617528830880480644125, 23687738668934964248625
Offset: 1
a(2)=1 for the forest: {r1-1, r2-2} (with root labels r1 and r2). The order between the components of the forest is irrelevant (like for sets).
a(3)=9 increasing ternary 2-forest with n=3 vertices: there are three 2-forests (the one vertex tree together with any of the three different 2-vertex trees) each with three increasing labelings. - _Wolfdieter Lang_, Sep 14 2007
- Robert Israel, Table of n, a(n) for n = 1..370
- Selden Crary, Richard Diehl Martinez, Michael Saunders, The Nu Class of Low-Degree-Truncated Rational Multifunctions. Ib. Integrals of Matern-correlation functions for all odd-half-integer class parameters, arXiv:1707.00705 [stat.ME], 2017, Table 2.
- Alexander Kreinin, Integer Sequences and Laplace Continued Fraction, Preprint 2016.
- Alexander Kreinin, Integer Sequences Connected to the Laplace Continued Fraction and Ramanujan's Identity, Journal of Integer Sequences, 19 (2016), #16.6.2.
- Donovan Young, A critical quartet for queuing couples, arXiv:2007.13868 [math.CO], 2020.
Cf.
A001147 (m=1 column of
A035342). See a D. Callan comment there on the number of increasing ordered rooted trees on n+1 vertices.
-
I:=[0,1,9]; [n le 3 select I[n] else - 2*(n-1)*(2*n-3)*Self(n-2)+(4*n-3)*Self(n-1): n in [1..30]]; // Vincenzo Librandi, Sep 12 2015
-
F:= gfun:-rectoproc({(4*n^2+6*n+2)*a(n)+(-4*n-5)*a(n+1)+a(n+2),a(1)=0,a(2)=1,a(3)=9},a(n),remember):
map(f, [$1..30]); # Robert Israel, Sep 11 2015
-
Table[Round [n! (4^(n - 1) - Binomial[2 n, n]/2)/2^(n - 1)], {n, 1, 20}] (* Vincenzo Librandi, Sep 12 2015 *)
-
a(n) = n!*(4^(n-1)-binomial(2*n, n)/2)/2^(n-1);
vector(40, n, a(n)) \\ Altug Alkan, Oct 01 2015
A336598
Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords cross the marked chord.
Original entry on oeis.org
1, 4, 2, 21, 18, 6, 144, 156, 96, 24, 1245, 1500, 1260, 600, 120, 13140, 16470, 16560, 11160, 4320, 720, 164745, 207270, 231210, 194040, 108360, 35280, 5040, 2399040, 2976120, 3507840, 3402000, 2419200, 1149120, 322560, 40320
Offset: 1
Triangle begins:
1;
4, 2;
21, 18, 6;
144, 156, 96, 24;
1245, 1500, 1260, 600, 120;
...
For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can be either (1,3), and so crossed once by (2,4), or (2,4), and so crossed once by (1,3). Hence T(2,1) = 2.
Row sums are n*
A001147(n) for n > 0.
First column is
A233481(n) for n > 0.
Leading diagonal is
A000142(n) for n > 0.
Sub-leading diagonal is n*
A000142(n) for n > 1.
-
CoefficientList[Normal[Series[x/Sqrt[1-2*x]/(1-x(1+y)),{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}]
-
T(n)={[Vecrev(p) | p<-Vec(serlaplace(x/sqrt(1 - 2*x + O(x^n))/(1 - x*(1 + y))))]}
{ my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jul 29 2020
A336600
Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords contain the marked chord.
Original entry on oeis.org
1, 5, 1, 32, 11, 2, 260, 116, 38, 6, 2589, 1344, 594, 174, 24, 30669, 17529, 9294, 3774, 984, 120, 422232, 257487, 153852, 76782, 28272, 6600, 720, 6633360, 4234320, 2746260, 1576980, 726480, 242640, 51120, 5040, 117193185, 77358600, 53170380, 33718500, 18171360, 7693200, 2340720, 448560, 40320
Offset: 1
Triangle begins:
1;
5, 1;
32, 11, 2;
260, 116, 38, 6;
2589, 1344, 594, 174, 24;
...
For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can only be (2,3) and it is contained by one other chord, namely (1,4), hence T(2,1) = 1.
Row sums are n*
A001147(n) for n > 0.
Leading diagonal is
A000142(n-1) for n > 0.
Sub-leading diagonal is
A001344(n-2) for n > 1.
-
CoefficientList[Normal[Series[Log[(1-x*(1+y))/(1-2*x)]/(1-y)/Sqrt[1-2*x],{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}]
A336601
Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords are excluded by (i.e., are outside and do not contain) the marked chord.
Original entry on oeis.org
1, 4, 2, 22, 16, 7, 160, 136, 88, 36, 1464, 1344, 1044, 624, 249, 16224, 15504, 13344, 9624, 5484, 2190, 211632, 206592, 188952, 152832, 104322, 58080, 23535, 3179520, 3139200, 2977920, 2594880, 1990080, 1309680, 725040, 299880, 54092160, 53729280, 52096320, 47681280, 39652560, 29174400, 18809640, 10473120, 4426065
Offset: 1
Triangle begins:
1;
4, 2;
22, 16, 7;
160, 136, 88, 36;
1464, 1344, 1044, 624, 249;
...
For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can either be (1,2) and it excludes one other chord, namely (3,4), or vice-versa, hence T(2,1) = 2.
Row sums are n*
A001147(n) for n > 0.
The first column is
A087547(n) for n > 0.
Leading diagonal is
A034430(n-1) for n > 0.
-
CoefficientList[Normal[Series[1/(1-y)/Sqrt[1-2*x]*ArcTan[(x*(1-y))/Sqrt[(1-2*x)]/Sqrt[1-2*y*x]],{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}]
Showing 1-5 of 5 results.
Comments