A336599
Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords are contained within the marked chord.
Original entry on oeis.org
1, 5, 1, 33, 9, 3, 279, 87, 39, 15, 2895, 975, 495, 255, 105, 35685, 12645, 6885, 4005, 2205, 945, 509985, 187425, 106785, 66465, 41265, 23625, 10395, 8294895, 3133935, 1843695, 1198575, 795375, 513135, 301455, 135135, 151335135, 58437855, 35213535, 23601375, 16343775, 11263455, 7453215, 4459455, 2027025
Offset: 1
Triangle begins:
1;
5, 1;
33, 9, 3;
279, 87, 39, 15;
2895, 975, 495, 255, 105;
...
For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can only be (1,4) and it contains one other chord, namely (2,3), hence T(2,1) = 1.
Row sums are n*
A001147(n) for n > 0.
Leading diagonal is
A001147(n-1) for n > 0.
The first column is
A129890(n-1) for n > 0.
The second column is
A035101(n+1) for n > 0.
-
CoefficientList[Normal[Series[(Sqrt[1-2*y*x]-Sqrt[1-2*x])/(1-2*x)/(1-y),{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}]
A336600
Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords contain the marked chord.
Original entry on oeis.org
1, 5, 1, 32, 11, 2, 260, 116, 38, 6, 2589, 1344, 594, 174, 24, 30669, 17529, 9294, 3774, 984, 120, 422232, 257487, 153852, 76782, 28272, 6600, 720, 6633360, 4234320, 2746260, 1576980, 726480, 242640, 51120, 5040, 117193185, 77358600, 53170380, 33718500, 18171360, 7693200, 2340720, 448560, 40320
Offset: 1
Triangle begins:
1;
5, 1;
32, 11, 2;
260, 116, 38, 6;
2589, 1344, 594, 174, 24;
...
For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can only be (2,3) and it is contained by one other chord, namely (1,4), hence T(2,1) = 1.
Row sums are n*
A001147(n) for n > 0.
Leading diagonal is
A000142(n-1) for n > 0.
Sub-leading diagonal is
A001344(n-2) for n > 1.
-
CoefficientList[Normal[Series[Log[(1-x*(1+y))/(1-2*x)]/(1-y)/Sqrt[1-2*x],{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}]
A336601
Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords are excluded by (i.e., are outside and do not contain) the marked chord.
Original entry on oeis.org
1, 4, 2, 22, 16, 7, 160, 136, 88, 36, 1464, 1344, 1044, 624, 249, 16224, 15504, 13344, 9624, 5484, 2190, 211632, 206592, 188952, 152832, 104322, 58080, 23535, 3179520, 3139200, 2977920, 2594880, 1990080, 1309680, 725040, 299880, 54092160, 53729280, 52096320, 47681280, 39652560, 29174400, 18809640, 10473120, 4426065
Offset: 1
Triangle begins:
1;
4, 2;
22, 16, 7;
160, 136, 88, 36;
1464, 1344, 1044, 624, 249;
...
For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can either be (1,2) and it excludes one other chord, namely (3,4), or vice-versa, hence T(2,1) = 2.
Row sums are n*
A001147(n) for n > 0.
The first column is
A087547(n) for n > 0.
Leading diagonal is
A034430(n-1) for n > 0.
-
CoefficientList[Normal[Series[1/(1-y)/Sqrt[1-2*x]*ArcTan[(x*(1-y))/Sqrt[(1-2*x)]/Sqrt[1-2*y*x]],{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}]
A233481
Number of singletons (strong fixed points) in pair-partitions.
Original entry on oeis.org
0, 1, 4, 21, 144, 1245, 13140, 164745, 2399040, 39834585, 742940100, 15374360925, 349484058000, 8654336615925, 231842662751700, 6679510641428625, 205916703920928000, 6762863294018456625, 235719416966063530500, 8689887736412502745125
Offset: 0
A081054 counts pair-partitions of a fixed size without singletons, i.e., linear chord diagrams with 2n nodes and n arcs in which each arc crosses another arc.
-
a := n -> 2*n*GAMMA(1/2+n)*hypergeom([1/2,-n+1],[3/2],-1)/sqrt(Pi);
seq(simplify(a(n)), n = 0..19); # Peter Luschny, Dec 16 2013
# Alternative:
u := (z/2)^2: egf := 2*u*exp(u)*hypergeom([1/2], [3/2], u): ser := series(egf, z, 40): seq((2*n)!*coeff(ser, z, 2*n), n = 0..19); # Peter Luschny, Mar 14 2023
-
Table[Sum[(2 k - 1)!! (2 n - 2 k - 1)!!, {k, 0, n - 1}], {n,0,30}] (* T. D. Noe, Dec 13 2013 *)
-
def A233481():
a, b, n = 0, 1, 1
while True:
yield a
n += 1
a, b = b, n*((3*n-4)*b/(n-1)-(2*n-3)*a)
a = A233481(); [next(a) for i in range(17)] # Peter Luschny, Dec 14 2013
Showing 1-4 of 4 results.
Comments