cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A336599 Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords are contained within the marked chord.

Original entry on oeis.org

1, 5, 1, 33, 9, 3, 279, 87, 39, 15, 2895, 975, 495, 255, 105, 35685, 12645, 6885, 4005, 2205, 945, 509985, 187425, 106785, 66465, 41265, 23625, 10395, 8294895, 3133935, 1843695, 1198575, 795375, 513135, 301455, 135135, 151335135, 58437855, 35213535, 23601375, 16343775, 11263455, 7453215, 4459455, 2027025
Offset: 1

Views

Author

Donovan Young, Jul 29 2020

Keywords

Examples

			Triangle begins:
     1;
     5,    1;
    33,    9,    3;
   279,   87,   39,  15;
  2895,  975,  495, 255, 105;
...
For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can only be (1,4) and it contains one other chord, namely (2,3), hence T(2,1) = 1.
		

Crossrefs

Row sums are n*A001147(n) for n > 0.
Leading diagonal is A001147(n-1) for n > 0.
The first column is A129890(n-1) for n > 0.
The second column is A035101(n+1) for n > 0.

Programs

  • Mathematica
    CoefficientList[Normal[Series[(Sqrt[1-2*y*x]-Sqrt[1-2*x])/(1-2*x)/(1-y),{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}]

Formula

E.g.f.: (sqrt(1 - 2*y*x) - sqrt(1 - 2*x))/(1 - 2*x)/(1 - y).

A336600 Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords contain the marked chord.

Original entry on oeis.org

1, 5, 1, 32, 11, 2, 260, 116, 38, 6, 2589, 1344, 594, 174, 24, 30669, 17529, 9294, 3774, 984, 120, 422232, 257487, 153852, 76782, 28272, 6600, 720, 6633360, 4234320, 2746260, 1576980, 726480, 242640, 51120, 5040, 117193185, 77358600, 53170380, 33718500, 18171360, 7693200, 2340720, 448560, 40320
Offset: 1

Views

Author

Donovan Young, Jul 30 2020

Keywords

Examples

			Triangle begins:
     1;
     5,    1;
    32,   11,    2;
   260,  116,   38,   6;
  2589, 1344,  594, 174, 24;
...
For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can only be (2,3) and it is contained by one other chord, namely (1,4), hence T(2,1) = 1.
		

Crossrefs

Row sums are n*A001147(n) for n > 0.
Leading diagonal is A000142(n-1) for n > 0.
Sub-leading diagonal is A001344(n-2) for n > 1.

Programs

  • Mathematica
    CoefficientList[Normal[Series[Log[(1-x*(1+y))/(1-2*x)]/(1-y)/Sqrt[1-2*x],{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}]

Formula

E.g.f.: log((1 - x*(1 + y))/(1 - 2*x))/(1 - y)/sqrt(1 - 2*x).

A336601 Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords are excluded by (i.e., are outside and do not contain) the marked chord.

Original entry on oeis.org

1, 4, 2, 22, 16, 7, 160, 136, 88, 36, 1464, 1344, 1044, 624, 249, 16224, 15504, 13344, 9624, 5484, 2190, 211632, 206592, 188952, 152832, 104322, 58080, 23535, 3179520, 3139200, 2977920, 2594880, 1990080, 1309680, 725040, 299880, 54092160, 53729280, 52096320, 47681280, 39652560, 29174400, 18809640, 10473120, 4426065
Offset: 1

Views

Author

Donovan Young, Jul 31 2020

Keywords

Examples

			Triangle begins:
     1;
     4,    2;
    22,   16,    7;
   160,  136,   88,  36;
  1464, 1344, 1044, 624, 249;
...
For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can either be (1,2) and it excludes one other chord, namely (3,4), or vice-versa, hence T(2,1) = 2.
		

Crossrefs

Row sums are n*A001147(n) for n > 0.
The first column is A087547(n) for n > 0.
Leading diagonal is A034430(n-1) for n > 0.

Programs

  • Mathematica
    CoefficientList[Normal[Series[1/(1-y)/Sqrt[1-2*x]*ArcTan[(x*(1-y))/Sqrt[(1-2*x)]/Sqrt[1-2*y*x]],{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}]

Formula

E.g.f.: arctan(x*(1 - y)/sqrt((1 - 2*x)*(1 - 2*x*y)))/(1 - y)/sqrt(1 - 2*x).

A233481 Number of singletons (strong fixed points) in pair-partitions.

Original entry on oeis.org

0, 1, 4, 21, 144, 1245, 13140, 164745, 2399040, 39834585, 742940100, 15374360925, 349484058000, 8654336615925, 231842662751700, 6679510641428625, 205916703920928000, 6762863294018456625, 235719416966063530500, 8689887736412502745125
Offset: 0

Views

Author

Wojciech Bozejko, Dec 11 2013

Keywords

Comments

For h(V) = number of singletons (non-crossing chords) in the pair-partition of 2n-elementary set P_2(2n), let T(2n) = sum_{V in P_2(2n)} h(V).
Elements of the sequence a(n) = T(2n).
a(n) is the number of linear chord diagrams on 2n vertices with one marked chord such that none of the remaining n-1 chords cross the marked chord, see [Young]. - Donovan Young, Aug 11 2020

Crossrefs

A081054 counts pair-partitions of a fixed size without singletons, i.e., linear chord diagrams with 2n nodes and n arcs in which each arc crosses another arc.

Programs

  • Maple
    a := n -> 2*n*GAMMA(1/2+n)*hypergeom([1/2,-n+1],[3/2],-1)/sqrt(Pi);
    seq(simplify(a(n)), n = 0..19); # Peter Luschny, Dec 16 2013
    # Alternative:
    u := (z/2)^2: egf := 2*u*exp(u)*hypergeom([1/2], [3/2], u): ser := series(egf, z, 40): seq((2*n)!*coeff(ser, z, 2*n), n = 0..19); # Peter Luschny, Mar 14 2023
  • Mathematica
    Table[Sum[(2 k - 1)!! (2 n - 2 k - 1)!!, {k, 0, n - 1}], {n,0,30}] (* T. D. Noe, Dec 13 2013 *)
  • Sage
    def A233481():
        a, b, n = 0, 1, 1
        while True:
            yield a
            n += 1
            a, b = b, n*((3*n-4)*b/(n-1)-(2*n-3)*a)
    a = A233481(); [next(a) for i in range(17)]  # Peter Luschny, Dec 14 2013

Formula

a(n) = T_{2n} = n*sum_{k=0..(n-1)} (2k-1)!!*(2n-2k-1)!!, where (2n-1)!! = 1*3*5*...*(2n-1).
From Peter Luschny, Dec 16 2013: (Start)
E.g.f.: x/((1-x)*sqrt(1-2*x)).
a(n) = 2*n*Gamma(1/2+n)*2_F_1([1/2,-n+1],[3/2],-1)/sqrt(Pi), where 2_F_1 is the hypergeometric function.
a(n) = n*((3*n-4)*a(n-1)/(n-1)-(2*n-3)*a(n-2)) for n>1.
a(n) = n*A034430(n-1) for n>=1.
a(n+1)/(n+1)! = JacobiP(n, 1/2, -n-1, 3).
2^n*a(n+1)/(n+1)! = A082590(n).
2^n*a(n+1)/(n+1) = A076729(n). (End)
a(n) ~ 2^(n+1/2) * n^n / exp(n). - Vaclav Kotesovec, Dec 20 2013
a(n) = (2*n)! * [z^(2*n)] 2*u*exp(u)*hypergeom([1/2], [3/2], u), where u = (z/2)^2. - Peter Luschny, Mar 14 2023
Showing 1-4 of 4 results.