A049606
Largest odd divisor of n!.
Original entry on oeis.org
1, 1, 1, 3, 3, 15, 45, 315, 315, 2835, 14175, 155925, 467775, 6081075, 42567525, 638512875, 638512875, 10854718875, 97692469875, 1856156927625, 9280784638125, 194896477400625, 2143861251406875, 49308808782358125, 147926426347074375, 3698160658676859375
Offset: 0
From _John M. Campbell_, May 28 2011: (Start)
The numerator of the permanent of the following 5 X 5 matrix is equal to a(5):
| 1/4 -1/4 -1/2 -1/4 1/4 |
| -1/4 1/4 1/2 1/4 -1/4 |
| -1/2 1/2 1 1/2 -1/2 |
| -1/4 1/4 1/2 1/4 -1/4 |
| 1/4 -1/4 -1/2 -1/4 1/4 | (End)
-
[ Denominator(2^n/Factorial(n)): n in [0..25] ]; // Klaus Brockhaus, Mar 10 2011
-
f:= n-> n! * 2^(add(i,i=convert(n,base,2))-n); # Peter Luschny, May 02 2009
seq (denom (coeff (series(1/(tanh(t)-1), t, 30), t, n)), n=0..25); # Peter Luschny, Aug 04 2011
seq(numer(n!/2^n), n=0..100); # Robert Israel, Jul 23 2015
-
Denominator[Table[(2^n)/n!,{n,0,40}]] (* Vladimir Joseph Stephan Orlovsky, Apr 03 2011*)
Table[Last[Select[Divisors[n!],OddQ]],{n,0,30}] (* Harvey P. Dale, Jul 24 2016 *)
Table[n!/2^IntegerExponent[n!,2], {n,1,30}] (* Clark Kimberling, Oct 22 2016 *)
-
A049606(n)=local(f=n!);f/2^valuation(f,2); \\ Joerg Arndt, Apr 22 2011
(Python 3.10+)
from math import factorial
def A049606(n): return factorial(n)>>n-n.bit_count() # Chai Wah Wu, Jul 11 2022
A160480
The Beta triangle read by rows.
Original entry on oeis.org
-1, -11, 1, -299, 36, -1, -15371, 2063, -85, 1, -1285371, 182474, -8948, 166, -1, -159158691, 23364725, -1265182, 29034, -287, 1, -27376820379, 4107797216, -237180483, 6171928, -77537, 456, -1
Offset: 2
The first few rows of the triangle BETA(n,m) with n=2,3,... and m=1,2,... are
[ -1],
[ -11, 1],
[ -299, 36, -1],
[ -15371, 2063 -85, 1].
The first few BETA(z;n) polynomials are
BETA(z;n=2) = -1,
BETA(z;n=3) = -11 + z^2,
BETA(z;n=4) = -299 + 36*z^2 - z^4.
The first few CFN1(z;n) polynomials are
CFN2(z;n=2) = (z^2 - 1),
CFN2(z;n=3) = (z^4 - 10*z^2 + 9),
CFN2(z;n=4) = (z^6 - 35*z^4 + 259*z^2 - 225).
The first few generating functions GK(z;n) are
GK(z;n=2) = ((-1)*(z^2-1)*GK(z,n=1) + (-1))/2,
GK(z;n=3) = ((z^4 - 10*z^2 + 9)*GK(z,n=1)+ (-11 + z^2))/24,
GK(z;n=4) = ((-1)*(z^6 - 35*z^4 + 259*z^2 - 225)*GK(z,n=1) + (-299 + 36*z^2 - z^4))/720.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- J. M. Amigo, Relations among Sums of Reciprocal Powers Part II, International Journal of Mathematics and Mathematical Sciences , Volume 2008 (2008), pp. 1-20.
- Johannes W. Meijer, The zeros of the Eta, Zeta, Beta and Lambda polynomials, jpg and pdf, Mar 03 2013.
The CFN2(z, n) and the cfn2(n, k) lead to
A008956.
-
nmax := 8; mmax := nmax: for n from 1 to nmax do BETA(n, n) := 0 end do: m := 1: for n from m+1 to nmax do BETA(n, m) := (2*n-3)^2*BETA(n-1, m) - (2*n-4)! od: for m from 2 to mmax do for n from m+1 to nmax do BETA(n, m) := (2*n-3)^2*BETA(n-1, m) - BETA(n-1, m-1) od: od: seq(seq(BETA(n, m), m=1..n-1), n= 2..nmax);
# End first program
nmax1 := 25; m := 1; BS1row := 1-2*m; for n from 0 to nmax1 do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: mmax1 := nmax1: for m1 from 1 to mmax1 do BS1[1-2*m1, 1] := euler(2*m1-2) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do BS1[1-2*m1, n] := (-1)^(n+1)*sum((-1)^(k1+1)*cfn2(n-1, k1-1) * BS1[2*k1-2*n-2*m1+1, 1], k1 =1..n)/(2*n-2)! od: od: seq(BS1[1-2*m, n], n=1..nmax1-m+1);
# End second program
-
BETA[2, 1] = -1;
BETA[n_, 1] := BETA[n, 1] = (2*n - 3)^2*BETA[n - 1, 1] - (2*n - 4)!;
BETA[n_ /; n > 2, m_ /; m > 0] /; 1 <= m <= n := BETA[n, m] = (2*n - 3)^2*BETA[n - 1, m] - BETA[n - 1, m - 1];
BETA[, ] = 0;
Table[BETA[n, m], {n, 2, 9}, {m, 1, n - 1}] // Flatten (* Jean-François Alcover, Dec 13 2017 *)
A120778
Numerators of partial sums of Catalan numbers scaled by powers of 1/4.
Original entry on oeis.org
1, 5, 11, 93, 193, 793, 1619, 26333, 53381, 215955, 436109, 3518265, 7088533, 28539857, 57414019, 1846943453, 3711565741, 14911085359, 29941580393, 240416274739, 482473579583, 1936010885087, 3883457090629, 62306843256889
Offset: 0
Rationals r(n): [1, 5/4, 11/8, 93/64, 193/128, 793/512, 1619/1024, 26333/16384, ...].
From _Anthony Hernandez_, Feb 05 2020: (Start)
For n = 4. The 4th even number is 8, and 8!!/(8-1)!! = 128/35, so a(4-1) = a(3) = 128 - 35 = 93.
For n = 7. The 7th even number is 14, and 14!!/(14-1)!! = 2048/429, so a(7-1) = a(6) = 2048 - 429 = 1619. (End)
-
[Numerator(2*(1-Binomial(2*n+2,n+1)/4^(n+1))): n in [0..25]]; // Vincenzo Librandi, Feb 17 2017
-
a := n -> 2^(2*(n+1) - add(i, i=convert(n+1, base, 2)))* (1-((n+1/2)!)/(sqrt(Pi)*(n+1)!)): seq(simplify(a(n)), n=0..23); # Peter Luschny, Dec 21 2017
-
f[n_] := f[n] = Numerator[(4/Pi) (n + 1) Integrate[x^n*ArcSin[Sqrt[x]], {x, 0, 1}]]; Array[f, 23, 0] (* Robert G. Wilson v, Jan 03 2011 *)
a[n_] := 2^(2(n+1) - DigitCount[n+1,2,1])(1 - ((n+1/2)!)/(Sqrt[Pi](n+1)!));
Table[a[n], {n, 0, 23}] (* Peter Luschny, Dec 21 2017 *)
Showing 1-3 of 3 results.
Comments