A046161
a(n) = denominator of binomial(2n,n)/4^n.
Original entry on oeis.org
1, 2, 8, 16, 128, 256, 1024, 2048, 32768, 65536, 262144, 524288, 4194304, 8388608, 33554432, 67108864, 2147483648, 4294967296, 17179869184, 34359738368, 274877906944, 549755813888, 2199023255552, 4398046511104, 70368744177664, 140737488355328, 562949953421312
Offset: 0
sqrt(1+x) = 1 + (1/2)*x - (1/8)*x^2 + (1/16)*x^3 - (5/128)*x^4 + (7/256)*x^5 - (21/1024)*x^6 + (33/2048)*x^7 + ...
binomial(2n,n)/4^n => 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, ...
The sequence e(0,n) begins 1, 3/2, 21/8, 77/16, 1155/128, 4389/256, 33649/1024, 129789/2048, 4023459/32768, ...
- W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, 1968; Chap. III, Eq. 4.1.
- B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 513, Eq. (7.282).
- Eli Maor, e: The Story of a Number. Princeton, New Jersey: Princeton University Press (1994), p. 72.
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equations 6:14:5 - 6:14:9 at pages 50-51.
- T. D. Noe, Table of n, a(n) for n = 0..200
- C. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, arXiv:hep-th/9304062, 1993. See V_n with N=1.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
- Jeremy and Patricia King, Problem 89.G, Problem Corner, The Mathematical Gazette, Vol. 90, No. 515 (2005), p. 314; Solution, ibid., Vol. 90, No. 517 (2006), pp. 163-164.
- V. H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49 (No. 3, March 2002), 311-317.
- Eric Weisstein's World of Mathematics, Binomial Series.
- Eric Weisstein's World of Mathematics, Heads-Minus-Tails Distribution.
- Eric Weisstein's World of Mathematics, Legendre Polynomial.
- Eric Weisstein's World of Mathematics, Random Matrix.
- Eric Weisstein's World of Mathematics, Random Walk 1-Dimensional.
- Index to divisibility sequences.
Cf.
A161198 triangle related to the series expansions of (1-x)^((-1-2*n)/2) for all values of n.
Cf.
A000108,
A000120,
A000466,
A001511,
A005563,
A048881,
A060818,
A061550,
A120778,
A173294,
A173296,
A173755,
A280442.
-
[Denominator(Binomial(2*n,n)/4^n): n in [0..30]]; // Vincenzo Librandi, Jul 18 2015
-
e := proc(l,m) local k; add(2^(k-2*m)*binomial(2*m-2*k,m-k)* binomial(m+k, m) *binomial(k,l), k=l..m); end: seq(denom(e(0,n)), n = 0..24);
Z[0]:=0: for k to 30 do Z[k]:=simplify(1/(2-z*Z[k-1])) od: g:=sum((Z[j]-Z[j-1]), j=1..30): gser:=series(g, z=0, 27): seq(denom(coeff(gser, z, n)), n=-1..23); # Zerinvary Lajos, May 21 2008
A046161 := proc(n) option remember: if n = 0 then 1 else 2^A001511(n) * procname(n-1) fi: end: A001511 := proc(n): padic[ordp](2*n, 2) end: seq(A046161(n), n = 0..24); # Johannes W. Meijer, Nov 04 2012
A046161 := n -> 4^n/2^add(i,i=convert(n, base, 2)):
seq(A046161(n), n=0..24); # Peter Luschny, Apr 08 2014
-
a[n_, m_] := Binomial[n - m/2 + 1, n - m + 1] - Binomial[n - m/2, n - m + 1]; s[n_] := Sum[ a[n, k], {k, 0, n}]; Table [Denominator[s[n]], {n, 0, 26}] (* Michele Dondi (bik.mido(AT)tiscalinet.it), Jul 11 2002 *)
Denominator[Table[Binomial[2n,n]/4^n,{n,0,30}]] (* Harvey P. Dale, Oct 29 2012 *)
Table[Denominator@LegendreP[2n,0],{n,0,24}] (* Andres Cicuttin, Jan 22 2018 *)
-
a(n) := denom(binomial(-1/2,n));
makelist(a(n),n,0,24); /* Peter Luschny, Nov 21 2012 */
-
a(n)=if(n<0,0,denominator(binomial(2*n,n)/4^n)) /* Michael Somos, Sep 15 2004 */
-
a(n)=my(s=n);while(n>>=1,s+=n);2^s \\ Charles R Greathouse IV, Apr 07 2012
-
a(n)=denominator(I^-n*pollegendre(n,I/2)) \\ Charles R Greathouse IV, Mar 18 2017
-
def A046161(n): return 1<<(n<<1)-n.bit_count() # Chai Wah Wu, Nov 15 2022
-
def A046161(n):
A005187 = lambda n: A005187(n//2) + n if n > 0 else 0
return 2^A005187(n)
[A046161(n) for n in (0..24)] # Peter Luschny, Nov 16 2012
A007406
Wolstenholme numbers: numerator of Sum_{k=1..n} 1/k^2.
Original entry on oeis.org
1, 5, 49, 205, 5269, 5369, 266681, 1077749, 9778141, 1968329, 239437889, 240505109, 40799043101, 40931552621, 205234915681, 822968714749, 238357395880861, 238820721143261, 86364397717734821, 17299975731542641, 353562301485889, 354019312583809, 187497409728228241
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 1..1152 (terms 1..200 from T. D. Noe)
- Stephen Crowley, Two New Zeta Constants: Fractal String, Continued Fraction, and Hypergeometric Aspects of the Riemann Zeta Function, arXiv:1207.1126 [math.NT], 2012.
- Romeo Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
- Hisanori Mishima, Factorizations of many number sequences
- Hisanori Mishima, Factorizations of many number sequences
- Hisanori Mishima, Factorizations of many number sequences
- D. Y. Savio, E. A. Lamagna and S.-M. Liu, Summation of harmonic numbers, pp. 12-20 of E. Kaltofen and S. M. Watt, editors, Computers and Mathematics, Springer-Verlag, NY, 1989.
- M. D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications , J. Int. Seq. 13 (2010), 10.6.7, Section 4.3.2.
- Eric Weisstein's World of Mathematics, Wolstenholme's Theorem
- Eric Weisstein's World of Mathematics, Wolstenholme Number
-
import Data.Ratio ((%), numerator)
a007406 n = a007406_list !! (n-1)
a007406_list = map numerator $ scanl1 (+) $ map (1 %) $ tail a000290_list
-- Reinhard Zumkeller, Jul 06 2012
-
[Numerator(&+[1/k^2:k in [1..n]]):n in [1..23]]; // Marius A. Burtea, Aug 02 2019
-
a:= n-> numer(add(1/i^2, i=1..n)): seq(a(n), n=1..24); # Zerinvary Lajos, Mar 28 2007
-
a[n_] := If[ n<1, 0, Numerator[HarmonicNumber[n, 2]]]; Table[a[n], {n, 100}]
Numerator[HarmonicNumber[Range[20],2]] (* Harvey P. Dale, Jul 06 2014 *)
-
{a(n) = if( n<1, 0, numerator( sum( k=1, n, 1 / k^2 ) ) )} /* Michael Somos, Jan 16 2011 */
A120996
Numerators of partial sums of Catalan numbers scaled by powers of 1/9.
Original entry on oeis.org
1, 10, 92, 833, 7511, 22547, 202967, 1826846, 49326272, 443941310, 3995488586, 35959456060, 323635312552, 2912718555868, 2912718853028, 26214470754457, 235930240718743, 6370116542620991, 57331049042801819
Offset: 0
Rationals r(n): [1, 10/9, 92/81, 833/729, 7511/6561, 22547/19683,
202967/177147, 1826846/1594323,...].
A082687
Numerator of Sum_{k=1..n} 1/(n+k).
Original entry on oeis.org
1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 7751493599, 225175759291, 13981692518567, 14000078506967, 98115155543129, 3634060848592973, 3637485804655193
Offset: 1
H'(2n) = H(2n) - H(n) = {1/2, 7/12, 37/60, 533/840, 1627/2520, 18107/27720, 237371/360360, 95549/144144, 1632341/2450448, 155685007/232792560, ...}, where H(n) = A001008/A002805.
n=2: HilbertMatrix(n,n)
1 1/2
1/2 1/3
so a(2) = Numerator(1 + 1/2 + 1/2 + 1/3) = Numerator(7/3) = 7.
The n X n Hilbert matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
-
[Numerator((HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
-
a := n -> numer(harmonic(2*n) - harmonic(n)):
seq(a(n), n=1..20); # Peter Luschny, Nov 02 2017
-
Numerator[Sum[1/k,{k,1,2*n}] - Sum[1/k,{k,1,n}]] (* Alexander Adamchuk, Apr 11 2006 *)
Table[Numerator[Sum[1/(i + j - 1), {i, n}, {j, n}]], {n, 20}] (* Alexander Adamchuk, Apr 11 2006 *)
Table[HarmonicNumber[2 n] - HarmonicNumber[n], {n, 20}] // Numerator (* Eric W. Weisstein, Dec 14 2017 *)
-
a(n) = numerator(sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
-
[numerator(harmonic_number(2*n,1) - harmonic_number(n,1)) for n in range(1,41)] # G. C. Greubel, Jul 24 2023
A120777
a(n) = 2^(2*n - valuation(CatalanNumber(n), 2)).
Original entry on oeis.org
1, 4, 8, 64, 128, 512, 1024, 16384, 32768, 131072, 262144, 2097152, 4194304, 16777216, 33554432, 1073741824, 2147483648, 8589934592, 17179869184, 137438953472, 274877906944, 1099511627776, 2199023255552, 35184372088832, 70368744177664, 281474976710656, 562949953421312
Offset: 0
-
a := n -> denom(binomial(2*n+2, n+1) / 2^(2*n+1)):
seq(a(n), n=0..22); # Johannes W. Meijer, Sep 23 2012
Conjecture: The following Maple program appears to generate this sequence! Z[0]:=0: for k to 30 do Z[k]:=simplify(1/(2-z*Z[k-1])) od: g:=sum((Z[j]-Z[j-1]), j=1..30): gser:=series(g, z=0, 27): seq(denom(coeff(gser, z, n))/2, n=0..22); # Zerinvary Lajos, May 21 2008
a := proc(n) option remember: if n = 0 then b(0):=0 else b(n) := b(n-1) + A001511(n+1) fi: a(n) := 2^b(n) end proc: A001511 := proc(n) option remember: if n = 1 then 1 else procname(n-1) + (-1)^n * procname(floor(n/2)) fi: end proc:
seq(a(n), n=0..22); # Johannes W. Meijer, Jul 06 2009, revised Sep 23 2012
-
Table[Denominator[CatalanNumber[k]/(-4)^k], {k, 0, 22}] (* Jean-François Alcover, Jun 21 2013 *)
(* Alternative: *)
A120777[n_] := 2^(2*n - IntegerExponent[CatalanNumber[n], 2]);
Table[A120777[n], {n, 0, 26}] (* Peter Luschny, Apr 16 2024 *)
A141244
Numerators in the expansion of (1-sqrt(1-x^2))/(1-x).
Original entry on oeis.org
0, 0, 1, 1, 5, 5, 11, 11, 93, 93, 193, 193, 793, 793, 1619, 1619, 26333, 26333, 53381, 53381, 215955, 215955, 436109, 436109, 3518265, 3518265, 7088533, 7088533, 28539857, 28539857, 57414019
Offset: 0
A160481
Row sums of the Beta triangle A160480.
Original entry on oeis.org
-1, -10, -264, -13392, -1111680, -137030400, -23500108800, -5351202662400, -1562069156659200, -568747270103040000, -252681700853514240000, -134539938778433126400000, -84573370199475510312960000, -61972704966344777143418880000, -52361960516341326660973363200000
Offset: 2
-
nmax := 14; mmax := nmax: for n from 1 to nmax do BETA(n, n) := 0 end do: m := 1: for n from m+1 to nmax do BETA(n,m) := (2*n-3)^2*BETA(n-1, m)-(2*n-4)! od: for m from 2 to mmax do for n from m+1 to nmax do BETA(n, m) := (2*n-3)^2*BETA(n-1, m) - BETA(n-1, m-1) od: od: for n from 2 to nmax do s1(n) := 0: for m from 1 to n-1 do s1(n) := s1(n) + BETA(n, m) od: od: seq(s1(n), n=2..nmax);
# End first program
nmax := nmax; A120778 := proc(n): numer(sum(binomial(2*k1, k1)/(k1+1) / 4^k1, k1=0..n)) end proc: A000165 := proc(n): 2^n*n! end proc: A049606 := proc(n): denom(2^n/n!) end proc: for n from 2 to nmax do s2(n) := (-1)*A120778(n-2)*A000165(n-2)*A049606(n-1) end do: seq(s2(n), n=2..nmax);
# End second program
-
BETA[2, 1] = -1; BETA[n_, 1] := BETA[n, 1] = (2*n - 3)^2*BETA[n - 1, 1] - (2*n - 4)!; BETA[n_ /; n > 2, m_ /; m > 0] /; 1 <= m <= n := BETA[n, m] = (2*n - 3)^2*BETA[n - 1, m] - BETA[n - 1, m - 1]; BETA[, ] = 0;
Table[Sum[BETA[n, m], {m, 1, n - 1}], {n, 2, 14}] (* Jean-François Alcover, Dec 13 2017 *)
A362534
Numerators of the ratio of the symmetry-constrained bound to the adiabatic bound on polarization transfer in AXn spin-1/2 systems.
Original entry on oeis.org
1, 1, 6, 6, 15, 15, 140, 140, 315, 315, 1386, 1386, 3003, 3003, 51480, 51480, 109395, 109395, 92378, 92378, 969969, 969969, 2704156, 2704156, 16900975, 16900975, 70204050, 70204050, 145422675, 145422675, 4808643120, 4808643120, 9917826435, 9917826435, 40838108850, 40838108850
Offset: 1
- G. C. Chingas, A. N. Garroway, W. B. Moniz, and R. D. Bertrand, Adiabatic J cross-polarization in liquids for signal enhancement in NMR, Journal of Chemical Physics, 102:8 (1980), 2526-2528 (page 1, equation 2 gives an expression for the adiabatic bounds).
- Malcolm H. Levitt, Symmetry constraints on spin dynamics: Application to hyperpolarized NMR, Journal of Chemical Physics, 102:8 (2016).
- Ole W. Sørensen, A universal bound on spin dynamics, Journal of Magnetic Resonance, 262 (1990) (appendix gives proof of the expression for symmetry constrained bounds).
-
Table[Numerator[Ceiling[n/2] (2^n Binomial[n, Ceiling[n/2]]^-1 - 1 )^-1], {n, 1, 20}]
-
a(n) = numerator(ceil(n/2)/(2^(n)*binomial(n,ceil(n/2))^(-1) - 1)); \\ Michel Marcus, Apr 25 2023
Showing 1-8 of 8 results.
Comments