cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A097324 Numbers n such that A067655(n) is different from A049606(n).

Original entry on oeis.org

14, 18, 23, 25, 29, 35, 36, 40, 41, 42, 47, 51, 53, 58, 61, 62, 63, 69, 70, 71, 73, 80, 81, 84, 86, 88, 89, 90, 91, 95, 96, 99, 100, 102, 104, 106, 107, 109, 110, 113, 117, 118, 124, 127, 128, 130, 132, 135, 137, 139, 141, 146, 147, 150, 152, 155, 156, 157, 161
Offset: 1

Views

Author

Ralf Stephan, Aug 11 2004

Keywords

Comments

Or, denominator of 2^n/n! differs from denominator of sum(k=1,n,C(n-1,k-1)*2^k/k!).
We conjecture that the sequence is infinite, the sequence and its complement (cases where the two values are equal) equipartition N and the difference between consecutive members of this sequence never exceeds c=7.

A064984 Triangle of coefficients T[n,m] of polynomials n, n^2, (n+2n^3)/3, n^2(2+n^2)/3, n(3+10n^2+2n^4)/15, etc. after multiplication by the denominators (A049606).

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 2, 0, 1, 3, 0, 10, 0, 2, 0, 23, 0, 20, 0, 2, 45, 0, 196, 0, 70, 0, 4, 0, 132, 0, 154, 0, 28, 0, 1, 315, 0, 1636, 0, 798, 0, 84, 0, 2, 0, 5067, 0, 7180, 0, 1806, 0, 120, 0, 2, 14175, 0, 83754, 0, 50270, 0, 7392, 0, 330, 0, 4, 0, 146430, 0, 239327, 0, 74800, 0
Offset: 1

Views

Author

Wouter Meeussen, Oct 30 2001

Keywords

Comments

These polynomials are P(1, n) = 2*Sum[k, {k,1,n-1}] + n, counting up to n and down again; P(2, m) = 2*Sum[P(1,n), {n,1,m-1}] + P(1,m), meaning up and down to n and this for n from 1 up to m and down again; etc.

Examples

			1+2+3+2+1 = 3^2, (1)+(1+2+1)+(1+2+3+2+1)+(1+2+1)+(1) = (n+2n^3)/3.
		

Crossrefs

Row sums give A049606 again, final entry in each row seems to give A048896.

Programs

  • Mathematica
    CoefficientList[ #, n ]&/@(NestList[ ((2*Sum[ #, {n, k-1} ]+(#/. n->k)//Simplify)/.k->n)&, n, -1+16 ] Denominator[ 2^#/#!&/@Range[ 16 ] ])

A000265 Remove all factors of 2 from n; or largest odd divisor of n; or odd part of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 1, 65, 33, 67, 17, 69, 35, 71, 9, 73, 37, 75, 19, 77
Offset: 1

Views

Author

Keywords

Comments

When n > 0 is written as k*2^j with k odd then k = A000265(n) and j = A007814(n), so: when n is written as k*2^j - 1 with k odd then k = A000265(n+1) and j = A007814(n+1), when n > 1 is written as k*2^j + 1 with k odd then k = A000265(n-1) and j = A007814(n-1).
Also denominator of 2^n/n (numerator is A075101(n)). - Reinhard Zumkeller, Sep 01 2002
Slope of line connecting (o, a(o)) where o = (2^k)(n-1) + 1 is 2^k and (by design) starts at (1, 1). - Josh Locker (joshlocker(AT)macfora.com), Apr 17 2004
Numerator of n/2^(n-1). - Alexander Adamchuk, Feb 11 2005
From Marco Matosic, Jun 29 2005: (Start)
"The sequence can be arranged in a table:
1
1 3 1
1 5 3 7 1
1 9 5 11 3 13 7 15 1
1 17 9 19 5 21 11 23 3 25 13 27 7 29 15 31 1
Every new row is the previous row interspaced with the continuation of the odd numbers.
Except for the ones; the terms (t) in each column are t+t+/-s = t_+1. Starting from the center column of threes and working to the left the values of s are given by A000265 and working to the right by A000265." (End)
This is a fractal sequence. The odd-numbered elements give the odd natural numbers. If these elements are removed, the original sequence is recovered. - Kerry Mitchell, Dec 07 2005
2k + 1 is the k-th and largest of the subsequence of k terms separating two successive equal entries in a(n). - Lekraj Beedassy, Dec 30 2005
It's not difficult to show that the sum of the first 2^n terms is (4^n + 2)/3. - Nick Hobson, Jan 14 2005
In the table, for each row, (sum of terms between 3 and 1) - (sum of terms between 1 and 3) = A020988. - Eric Desbiaux, May 27 2009
This sequence appears in the analysis of A160469 and A156769, which resemble the numerator and denominator of the Taylor series for tan(x). - Johannes W. Meijer, May 24 2009
Indices n such that a(n) divides 2^n - 1 are listed in A068563. - Max Alekseyev, Aug 25 2013
From Alexander R. Povolotsky, Dec 17 2014: (Start)
With regard to the tabular presentation described in the comment by Marco Matosic: in his drawing, starting with the 3rd row, the first term in the row, which is equal to 1 (or, alternatively the last term in the row, which is also equal to 1), is not in the actual sequence and is added to the drawing as a fictitious term (for the sake of symmetry); an actual A000265(n) could be considered to be a(j,k) (where j >= 1 is the row number and k>=1 is the column subscript), such that a(j,1) = 1:
1
1 3
1 5 3 7
1 9 5 11 3 13 7 15
1 17 9 19 5 21 11 23 3 25 13 27 7 29 15 31
and so on ... .
The relationship between k and j for each row is 1 <= k <= 2^(j-1). In this corrected tabular representation, Marco's notion that "every new row is the previous row interspaced with the continuation of the odd numbers" remains true. (End)
Partitions natural numbers to the same equivalence classes as A064989. That is, for all i, j: a(i) = a(j) <=> A064989(i) = A064989(j). There are dozens of other such sequences (like A003602) for which this also holds: In general, all sequences for which a(2n) = a(n) and the odd bisection is injective. - Antti Karttunen, Apr 15 2017
From Paul Curtz, Feb 19 2019: (Start)
This sequence is the truncated triangle:
1, 1;
3, 1, 5;
3, 7, 1, 9;
5, 11, 3, 13, 7;
15, 1, 17, 9, 19, 5;
21, 11, 23, 3, 25, 13, 27;
7, 29, 15, 31, 1, 33, 17, 35;
...
The first column is A069834. The second column is A213671. The main diagonal is A236999. The first upper diagonal is A125650 without 0.
c(n) = ((n*(n+1)/2))/A069834 = 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 8, 8, 1, 1, ... for n > 0. n*(n+1)/2 is the rank of A069834. (End)
As well as being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 27 2019
a(n) is also the map n -> A026741(n) applied at least A007814(n) times. - Federico Provvedi, Dec 14 2021

Examples

			G.f. = x + x^2 + 3*x^3 + x^4 + 5*x^5 + 3*x^6 + 7*x^7 + x^8 + 9*x^9 + 5*x^10 + 11*x^11 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A049606 (partial products), A135013 (partial sums), A099545 (mod 4), A326937 (Dirichlet inverse).
Cf. A026741 (map), A001511 (converging steps), A038550 (prime index).
Cf. A195056 (Dgf at s=3).

Programs

  • Haskell
    a000265 = until odd (`div` 2)
    -- Reinhard Zumkeller, Jan 08 2013, Apr 08 2011, Oct 14 2010
    
  • Java
    int A000265(n){
        while(n%2==0) n>>=1;
        return n;
    }
    /* Aidan Simmons, Feb 24 2019 */
    
  • Julia
    using IntegerSequences
    [OddPart(n) for n in 1:77] |> println  # Peter Luschny, Sep 25 2021
    
  • Magma
    A000265:= func< n | n/2^Valuation(n,2) >;
    [A000265(n): n in [1..120]]; // G. C. Greubel, Jul 31 2024
    
  • Maple
    A000265:=proc(n) local t1,d; t1:=1; for d from 1 by 2 to n do if n mod d = 0 then t1:=d; fi; od; t1; end: seq(A000265(n), n=1..77);
    A000265 := n -> n/2^padic[ordp](n,2): seq(A000265(n), n=1..77); # Peter Luschny, Nov 26 2010
  • Mathematica
    a[n_Integer /; n > 0] := n/2^IntegerExponent[n, 2]; Array[a, 77] (* Josh Locker *)
    a[ n_] := If[ n == 0, 0, n / 2^IntegerExponent[ n, 2]]; (* Michael Somos, Dec 17 2014 *)
  • PARI
    {a(n) = n >> valuation(n, 2)}; /* Michael Somos, Aug 09 2006, edited by M. F. Hasler, Dec 18 2014 */
    
  • Python
    from _future_ import division
    def A000265(n):
        while not n % 2:
            n //= 2
        return n # Chai Wah Wu, Mar 25 2018
    
  • Python
    def a(n):
        while not n&1: n >>= 1
        return n
    print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Jun 26 2025
    
  • SageMath
    def A000265(n): return n//2^valuation(n,2)
    [A000265(n) for n in (1..121)] # G. C. Greubel, Jul 31 2024
  • Scheme
    (define (A000265 n) (let loop ((n n)) (if (odd? n) n (loop (/ n 2))))) ;; Antti Karttunen, Apr 15 2017
    

Formula

a(n) = if n is odd then n, otherwise a(n/2). - Reinhard Zumkeller, Sep 01 2002
a(n) = n/A006519(n) = 2*A025480(n-1) + 1.
Multiplicative with a(p^e) = 1 if p = 2, p^e if p > 2. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d divides n and d is odd} phi(d). - Vladeta Jovovic, Dec 04 2002
G.f.: -x/(1 - x) + Sum_{k>=0} (2*x^(2^k)/(1 - 2*x^(2^(k+1)) + x^(2^(k+2)))). - Ralf Stephan, Sep 05 2003
(a(k), a(2k), a(3k), ...) = a(k)*(a(1), a(2), a(3), ...) In general, a(n*m) = a(n)*a(m). - Josh Locker (jlocker(AT)mail.rochester.edu), Oct 04 2005
a(n) = Sum_{k=0..n} A127793(n,k)*floor((k+2)/2) (conjecture). - Paul Barry, Jan 29 2007
Dirichlet g.f.: zeta(s-1)*(2^s - 2)/(2^s - 1). - Ralf Stephan, Jun 18 2007
a(A132739(n)) = A132739(a(n)) = A132740(n). - Reinhard Zumkeller, Aug 27 2007
a(n) = 2*A003602(n) - 1. - Franklin T. Adams-Watters, Jul 02 2009
a(n) = n/gcd(2^n,n). (This also shows that the true offset is 0 and a(0) = 0.) - Peter Luschny, Nov 14 2009
a(-n) = -a(n) for all n in Z. - Michael Somos, Sep 19 2011
From Reinhard Zumkeller, May 01 2012: (Start)
A182469(n, k) = A027750(a(n), k), k = 1..A001227(n).
a(n) = A182469(n, A001227(n)). (End)
a((2*n-1)*2^p) = 2*n - 1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 05 2013
G.f.: G(0)/(1 - 2*x^2 + x^4) - 1/(1 - x), where G(k) = 1 + 1/(1 - x^(2^k)*(1 - 2*x^(2^(k+1)) + x^(2^(k+2)))/(x^(2^k)*(1 - 2*x^(2^(k+1)) + x^(2^(k+2))) + (1 - 2*x^(2^(k+2)) + x^(2^(k+3)))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Aug 06 2013
a(n) = A003961(A064989(n)). - Antti Karttunen, Apr 15 2017
Completely multiplicative with a(2) = 1 and a(p) = p for prime p > 2, i.e., the sequence b(n) = a(n) * A008683(n) for n > 0 is the Dirichlet inverse of a(n). - Werner Schulte, Jul 08 2018
From Peter Bala, Feb 27 2019: (Start)
O.g.f.: F(x) - F(x^2) - F(x^4) - F(x^8) - ..., where F(x) = x/(1 - x)^2 is the generating function for the positive integers.
O.g.f. for reciprocals: Sum_{n >= 1} x^n/a(n) = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4) + (1/2)*L(x^8) + ..., where L(x) = log(1/(1 - x)).
Sum_{n >= 1} x^n/a(n) = 1/2*log(G(x)), where G(x) = 1 + 2*x + 4*x^2 + 6*x^3 + 10*x^4 + ... is the o.g.f. of A000123. (End)
O.g.f.: Sum_{n >= 1} phi(2*n-1)*x^(2*n-1)/(1 - x^(2*n-1)), where phi(n) is the Euler totient function A000010. - Peter Bala, Mar 22 2019
a(n) = A049606(n) / A049606(n-1). - Flávio V. Fernandes, Dec 08 2020
a(n) = numerator of n/2^(floor(n/2)). - Federico Provvedi, Dec 14 2021
a(n) = Sum_{d divides n} (-1)^(d+1)*phi(2*n/d). - Peter Bala, Jan 14 2024
a(n) = A030101(A030101(n)). - Darío Clavijo, Sep 19 2024

Extensions

Additional comments from Henry Bottomley, Mar 02 2000
More terms from Larry Reeves (larryr(AT)acm.org), Mar 14 2000
Name clarified by David A. Corneth, Apr 15 2017

A001316 Gould's sequence: a(n) = Sum_{k=0..n} (binomial(n,k) mod 2); number of odd entries in row n of Pascal's triangle (A007318); a(n) = 2^A000120(n).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 4, 8, 8, 16, 8, 16, 16, 32, 8, 16, 16, 32, 16, 32, 32, 64, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 4, 8, 8, 16, 8, 16, 16, 32
Offset: 0

Views

Author

Keywords

Comments

Also called Dress's sequence.
This sequence might be better called Glaisher's sequence, since James Glaisher showed that odd binomial coefficients are counted by 2^A000120(n) in 1899. - Eric Rowland, Mar 17 2017 [However, the name "Gould's sequence" is deeply entrenched in the literature. - N. J. A. Sloane, Mar 17 2017] [Named after the American mathematician Henry Wadsworth Gould (b. 1928). - Amiram Eldar, Jun 19 2021]
All terms are powers of 2. The first occurrence of 2^k is at n = 2^k - 1; e.g., the first occurrence of 16 is at n = 15. - Robert G. Wilson v, Dec 06 2000
a(n) is the highest power of 2 dividing binomial(2n,n) = A000984(n). - Benoit Cloitre, Jan 23 2002
Also number of 1's in n-th row of triangle in A070886. - Hans Havermann, May 26 2002. Equivalently, number of live cells in generation n of a one-dimensional cellular automaton, Rule 90, starting with a single live cell. - Ben Branman, Feb 28 2009. Ditto for Rule 18. - N. J. A. Sloane, Aug 09 2014. This is also the odd-rule cellular automaton defined by OddRule 003 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). - N. J. A. Sloane, Feb 25 2015
Also number of numbers k, 0<=k<=n, such that (k OR n) = n (bitwise logical OR): a(n) = #{k : T(n,k)=n, 0<=k<=n}, where T is defined as in A080098. - Reinhard Zumkeller, Jan 28 2003
To construct the sequence, start with 1 and use the rule: If k >= 0 and a(0),a(1),...,a(2^k-1) are the first 2^k terms, then the next 2^k terms are 2*a(0),2*a(1),...,2*a(2^k-1). - Benoit Cloitre, Jan 30 2003
Also, numerator((2^k)/k!). - Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Mar 03 2004
The odd entries in Pascal's triangle form the Sierpiński Gasket (a fractal). - Amarnath Murthy, Nov 20 2004
Row sums of Sierpiński's Gasket A047999. - Johannes W. Meijer, Jun 05 2011
Fixed point of the morphism "1" -> "1,2", "2" -> "2,4", "4" -> "4,8", ..., "2^k" -> "2^k,2^(k+1)", ... starting with a(0) = 1; 1 -> 12 -> 1224 -> = 12242448 -> 122424482448488(16) -> ... . - Philippe Deléham, Jun 18 2005
a(n) = number of 1's of stage n of the one-dimensional cellular automaton with Rule 90. - Andras Erszegi (erszegi.andras(AT)chello.hu), Apr 01 2006
a(33)..a(63) = A117973(1)..A117973(31). - Stephen Crowley, Mar 21 2007
Or the number of solutions of the equation: A000120(x) + A000120(n-x) = A000120(n). - Vladimir Shevelev, Jul 19 2009
For positive n, a(n) equals the denominator of the permanent of the n X n matrix consisting entirely of (1/2)'s. - John M. Campbell, May 26 2011
Companions to A001316 are A048896, A105321, A117973, A151930 and A191488. They all have the same structure. We observe that for all these sequences a((2*n+1)*2^p-1) = C(p)*A001316(n), p >= 0. If C(p) = 2^p then a(n) = A001316(n), if C(p) = 1 then a(n) = A048896(n), if C(p) = 2^p+2 then a(n) = A105321(n+1), if C(p) = 2^(p+1) then a(n) = A117973(n), if C(p) = 2^p-2 then a(n) = (-1)*A151930(n) and if C(p) = 2^(p+1)+2 then a(n) = A191488(n). Furthermore for all a(2^p - 1) = C(p). - Johannes W. Meijer, Jun 05 2011
a(n) = number of zeros in n-th row of A219463 = number of ones in n-th row of A047999. - Reinhard Zumkeller, Nov 30 2012
This is the Run Length Transform of S(n) = {1,2,4,8,16,...} (cf. A000079). The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g., 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product). - N. J. A. Sloane, Sep 05 2014
A105321(n+1) = a(n+1) + a(n). - Reinhard Zumkeller, Nov 14 2014
a(n) = A261363(n,n) = number of distinct terms in row n of A261363 = number of odd terms in row n+1 of A261363. - Reinhard Zumkeller, Aug 16 2015
From Gary W. Adamson, Aug 26 2016: (Start)
A production matrix for the sequence is lim_{k->infinity} M^k, the left-shifted vector of M:
1, 0, 0, 0, 0, ...
2, 0, 0, 0, 0, ...
0, 1, 0, 0, 0, ...
0, 2, 0, 0, 0, ...
0, 0, 1, 0, 0, ...
0, 0, 2, 0, 0, ...
0, 0, 0, 1, 0, ...
...
The result is equivalent to the g.f. of Apr 06 2003: Product_{k>=0} (1 + 2*z^(2^k)). (End)
Number of binary palindromes of length n for which the first floor(n/2) symbols are themselves a palindrome (Ji and Wilf 2008). - Jeffrey Shallit, Jun 15 2017

Examples

			Has a natural structure as a triangle:
  1,
  2,
  2,4,
  2,4,4,8,
  2,4,4,8,4,8,8,16,
  2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32,
  2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32,4,8,8,16,8,16,16,32,8,16,16,32,16,32,32,64,
  ...
The rows converge to A117973.
From _Omar E. Pol_, Jun 07 2009: (Start)
Also, triangle begins:
   1;
   2,2;
   4,2,4,4;
   8,2,4,4,8,4,8,8;
  16,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16;
  32,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32,4,8,8,16,8,16,16,32,8,16,16,32,16,32,32;
  64,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32,4,8,8,16,8,16,16,32,8,16,16,32,16,32,...
(End)
G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 2*x^4 + 4*x^5 + 4*x^6 + 8*x^7 + 2*x^8 + ... - _Michael Somos_, Aug 26 2015
		

References

  • Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, p. 75ff.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 145-151.
  • James W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quarterly Journal of Pure and Applied Mathematics, Vol. 30 (1899), pp. 150-156.
  • H. W. Gould, Exponential Binomial Coefficient Series. Tech. Rep. 4, Math. Dept., West Virginia Univ., Morgantown, WV, Sep 1961.
  • Olivier Martin, Andrew M. Odlyzko, and Stephen Wolfram, Algebraic properties of cellular automata, Comm. Math. Physics, Vol. 93 (1984), pp. 219-258. Reprinted in Theory and Applications of Cellular Automata, S Wolfram, Ed., World Scientific, 1986, pp. 51-90 and in Cellular Automata and Complexity: Collected Papers of Stephen Wolfram, Addison-Wesley, 1994, pp. 71-113
  • Manfred R. Schroeder, Fractals, Chaos, Power Laws, W. H. Freeman, NY, 1991, page 383.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Andrew Wuensche, Exploring Discrete Dynamics, Luniver Press, 2011. See Fig. 2.3.

Crossrefs

Equals left border of triangle A166548. - Gary W. Adamson, Oct 16 2009
For generating functions Product_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
For partial sums see A006046. For first differences see A151930.
This is the numerator of 2^n/n!, while A049606 gives the denominator.
If we subtract 1 from the terms we get a pair of essentially identical sequences, A038573 and A159913.
A163000 and A163577 count binomial coefficients with 2-adic valuation 1 and 2. A275012 gives a measure of complexity of these sequences. - Eric Rowland, Mar 15 2017
Cf. A286575 (run-length transform), A368655 (binomial transform), also A037445.

Programs

  • Haskell
    import Data.List (transpose)
    a001316 = sum . a047999_row  -- Reinhard Zumkeller, Nov 24 2012
    a001316_list = 1 : zs where
       zs = 2 : (concat $ transpose [zs, map (* 2) zs])
    -- Reinhard Zumkeller, Aug 27 2014, Sep 16 2011
    (Sage, Python)
    from functools import cache
    @cache
    def A001316(n):
        if n <= 1: return n+1
        return A001316(n//2) << n%2
    print([A001316(n) for n in range(88)])  # Peter Luschny, Nov 19 2012
    
  • Maple
    A001316 := proc(n) local k; add(binomial(n,k) mod 2, k=0..n); end;
    S:=[1]; S:=[op(S),op(2*s)]; # repeat ad infinitum!
    a := n -> 2^add(i,i=convert(n,base,2)); # Peter Luschny, Mar 11 2009
  • Mathematica
    Table[ Sum[ Mod[ Binomial[n, k], 2], {k, 0, n} ], {n, 0, 100} ]
    Nest[ Join[#, 2#] &, {1}, 7] (* Robert G. Wilson v, Jan 24 2006 and modified Jul 27 2014 *)
    Map[Function[Apply[Plus,Flatten[ #1]]], CellularAutomaton[90,{{1},0},100]] (* Produces counts of ON cells. N. J. A. Sloane, Aug 10 2009 *)
    ArrayPlot[CellularAutomaton[90, {{1}, 0}, 20]] (* Illustration of first 20 generations. - N. J. A. Sloane, Aug 14 2014 *)
    Table[2^(RealDigits[n - 1, 2][[1]] // Total), {n, 1, 100}] (* Gabriel C. Benamy, Dec 08 2009 *)
    CoefficientList[Series[Exp[2*x], {x, 0, 100}], x] // Numerator (* Jean-François Alcover, Oct 25 2013 *)
    Count[#,?OddQ]&/@Table[Binomial[n,k],{n,0,90},{k,0,n}] (* _Harvey P. Dale, Sep 22 2015 *)
    2^DigitSum[Range[0, 100], 2] (* Paolo Xausa, Jul 31 2025 *)
  • PARI
    {a(n) = if( n<0, 0, numerator(2^n / n!))};
    
  • PARI
    A001316(n)=1<M. F. Hasler, May 03 2009
    
  • PARI
    a(n)=2^hammingweight(n) \\ Charles R Greathouse IV, Jan 04 2013
    
  • Python
    def A001316(n):
        return 2**bin(n)[2:].count("1") # Indranil Ghosh, Feb 06 2017
    
  • Python
    def A001316(n): return 1<Karl-Heinz Hofmann, Aug 01 2025
    
  • Python
    import numpy # (version >= 2.0.0)
    n_up_to = 2**22
    A000079 = 1 << numpy.arange(n_up_to.bit_length())
    A001316 = A000079[numpy.bitwise_count(numpy.arange(n_up_to))]
    print(A001316[0:100]) # Karl-Heinz Hofmann, Aug 01 2025
    
  • Scheme
    (define (A001316 n) (let loop ((n n) (z 1)) (cond ((zero? n) z) ((even? n) (loop (/ n 2) z)) (else (loop (/ (- n 1) 2) (* z 2)))))) ;; Antti Karttunen, May 29 2017

Formula

a(n) = 2^A000120(n).
a(0) = 1; for n > 0, write n = 2^i + j where 0 <= j < 2^i; then a(n) = 2*a(j).
a(n) = 2*a(n-1)/A006519(n) = A000079(n)*A049606(n)/A000142(n).
a(n) = A038573(n) + 1.
G.f.: Product_{k>=0} (1+2*z^(2^k)). - Ralf Stephan, Apr 06 2003
a(n) = Sum_{i=0..2*n} (binomial(2*n, i) mod 2)*(-1)^i. - Benoit Cloitre, Nov 16 2003
a(n) mod 3 = A001285(n). - Benoit Cloitre, May 09 2004
a(n) = 2^n - 2*Sum_{k=0..n} floor(binomial(n, k)/2). - Paul Barry, Dec 24 2004
a(n) = Product_{k=0..log_2(n)} 2^b(n, k), b(n, k) = coefficient of 2^k in binary expansion of n. - Paul D. Hanna
Sum_{k=0..n-1} a(k) = A006046(n).
a(n) = n/2 + 1/2 + (1/2)*Sum_{k=0..n} (-(-1)^binomial(n,k)). - Stephen Crowley, Mar 21 2007
G.f. for a(n)/A156769(n): (1/2)*z^(1/2)*sinh(2*z^(1/2)). - Johannes W. Meijer, Feb 20 2009
Equals infinite convolution product of [1,2,0,0,0,0,0,0,0] aerated (A000079 - 1) times, i.e., [1,2,0,0,0,0,0,0,0] * [1,0,2,0,0,0,0,0,0] * [1,0,0,0,2,0,0,0,0]. - Mats Granvik, Gary W. Adamson, Oct 02 2009
a(n) = f(n, 1) with f(x, y) = if x = 0 then y otherwise f(floor(x/2), y*(1 + x mod 2)). - Reinhard Zumkeller, Nov 21 2009
a(n) = 2^(number of 1's in binary form of (n-1)). - Gabriel C. Benamy, Dec 08 2009
a((2*n+1)*2^p-1) = (2^p)*a(n), p >= 0. - Johannes W. Meijer, Jun 05 2011
a(n) = A000120(A001317(n)). - Reinhard Zumkeller, Nov 24 2012
a(n) = A226078(n,1). - Reinhard Zumkeller, May 25 2013
a(n) = lcm(n!, 2^n) / n!. - Daniel Suteu, Apr 28 2017
a(n) = A061142(A005940(1+n)). - Antti Karttunen, May 29 2017
a(0) = 1, a(2*n) = a(n), a(2*n+1) = 2*a(n). - Daniele Parisse, Feb 15 2024
a(n*m) <= a(n)^A000120(m). - Joe Amos, Mar 27 2025

Extensions

Additional comments from Henry Bottomley, Mar 12 2001
Further comments from N. J. A. Sloane, May 30 2009

A008977 a(n) = (4*n)!/(n!)^4.

Original entry on oeis.org

1, 24, 2520, 369600, 63063000, 11732745024, 2308743493056, 472518347558400, 99561092450391000, 21452752266265320000, 4705360871073570227520, 1047071828879079131681280, 235809301462142612780721600, 53644737765488792839237440000, 12309355935372581458927646400000
Offset: 0

Views

Author

Keywords

Comments

Number of paths of length 4*n in an n X n X n X n grid from (0,0,0,0) to (n,n,n,n).
a(n) occurs in Ramanujan's formula 1/Pi = (sqrt(8)/9801) * Sum_{n>=0} (4*n)!/(n!)^4 * (1103 + 26390*n)/396^(4*n). - Susanne Wienand, Jan 05 2013
a(n) is the number of ballot results that lead to a 4-way tie when 4*n voters each cast three votes for three out of four candidates vying for 3 slots on a county commission; each of these ballot results give 3*n votes to each of the four candidates. - Dennis P. Walsh, May 02 2013
a(n) is the constant term of (X + Y + Z + 1/(X*Y*Z))^(4*n). - Mark van Hoeij, May 07 2013
In Narumiya and Shiga on page 158 the g.f. is given as a hypergeometric function. - Michael Somos, Aug 12 2014
Diagonal of the rational function R(x,y,z,w) = 1/(1-(w+x+y+z)). - Gheorghe Coserea, Jul 15 2016

Examples

			a(13)=52!/(13!)^4=53644737765488792839237440000 is the number of ways of dealing the four hands in Bridge or Whist. - _Henry Bottomley_, Oct 06 2000
a(1)=24 since, in a 4-voter 3-vote election that ends in a four-way tie for candidates A, B, C, and D, there are 4! ways to arrange the needed vote sets {A,B,C}, {A,B,D}, {A,C,D}, and {B,C,D} among the 4 voters. - _Dennis P. Walsh_, May 02 2013
G.f. = 1 + 24*x + 2520*x^2 + 369600*x^3 + 63063000*x^4 + 11732745024*x^5 + ...
		

Crossrefs

Row 4 of A187783.
Related to diagonal of rational functions: A268545-A268555.

Programs

  • Magma
    [Factorial(4*n)/Factorial(n)^4: n in [0..20]]; // Vincenzo Librandi, Aug 13 2014
    
  • Maple
    A008977 := n->(4*n)!/(n!)^4;
  • Mathematica
    Table[(4n)!/(n!)^4,{n,0,16}] (* Harvey P. Dale, Oct 24 2011 *)
    a[ n_] := If[ n < 0, 0, (4 n)! / n!^4]; (* Michael Somos, Aug 12 2014 *)
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/4, 2/4, 3/4}, {1, 1}, 256 x], {x, 0, n}]; (* Michael Somos, Aug 12 2014 *)
  • Maxima
    A008977(n):=(4*n)!/(n!)^4$ makelist(A008977(n),n,0,20); /* Martin Ettl, Nov 15 2012 */
    
  • PARI
    a(n) = (4*n)!/n!^4; \\ Gheorghe Coserea, Jul 15 2016
    
  • Python
    from math import factorial
    def A008977(n): return factorial(n<<2)//factorial(n)**4 # Chai Wah Wu, Mar 15 2023

Formula

a(n) = A139541(n)*(A001316(n)/A049606(n))^3. - Reinhard Zumkeller, Apr 28 2008
Self-convolution of A178529, where A178529(n) = (4^n/n!^2) * Product_{k=0..n-1} (8*k + 1)*(8*k + 3).
G.f.: hypergeom([1/8, 3/8], [1], 256*x)^2. - Mark van Hoeij, Nov 16 2011
a(n) ~ 2^(8*n - 1/2) / (Pi*n)^(3/2). - Vaclav Kotesovec, Mar 07 2014
G.f.: hypergeom([1/4, 2/4, 3/4], [1, 1], 256*x). - Michael Somos, Aug 12 2014
From Peter Bala, Jul 12 2016: (Start)
a(n) = binomial(2*n,n)*binomial(3*n,n)*binomial(4*n,n) = ( [x^n](1 + x)^(2*n) ) * ( [x^n](1 + x)^(3*n) ) * ( [x^n](1 + x)^(4*n) ) = [x^n](F(x)^(24*n)), where F(x) = 1 + x + 29*x^2 + 2246*x^3 + 239500*x^4 + 30318701*x^5 + 4271201506*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008978, A008979, A186420 and A188662. (End)
0 = (x^2-256*x^3)*y''' + (3*x-1152*x^2)*y'' + (1-816*x)*y' - 24*y, where y is the g.f. - Gheorghe Coserea, Jul 15 2016
From Peter Bala, Jul 17 2016: (Start)
a(n) = Sum_{k = 0..3*n} (-1)^(n+k)*binomial(4*n,n + k)* binomial(n + k,k)^4.
a(n) = Sum_{k = 0..4*n} (-1)^k*binomial(4*n,k)*binomial(n + k,k)^4. (End)
E.g.f.: 3F3(1/4,1/2,3/4; 1,1,1; 256*x). - Ilya Gutkovskiy, Jan 23 2018
From Peter Bala, Feb 16 2020: (Start)
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, equation 39, p. 12.
a(n) = [(x*y*z)^n] (1 + x + y + z)^(4*n). (End)
D-finite with recurrence n^3*a(n) -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Aug 01 2022
a(n) = 24*A082368(n). - R. J. Mathar, Jun 21 2023

A036603 a(n) = n! in binary.

Original entry on oeis.org

1, 1, 10, 110, 11000, 1111000, 1011010000, 1001110110000, 1001110110000000, 1011000100110000000, 1101110101111100000000, 10011000010001010100000000, 11100100011001111110000000000, 101110011001010001100110000000000, 1010001001100001110110010100000000000
Offset: 0

Views

Author

Keywords

References

  • Donald E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.3.1, Table 1.

Crossrefs

Programs

  • Mathematica
    FromDigits/@(IntegerDigits[#, 2]&/@(Range[0, 15]!)) (* Harvey P. Dale, Feb 05 2012 *)
    BaseForm[Range[0, 15]!, 2] (* Alonso del Arte, May 19 2017 *)
  • PARI
    a(n) = fromdigits(binary(n!), 10); \\ Michel Marcus, Jul 30 2025

A136695 Final nonzero digit of n! in base 8.

Original entry on oeis.org

1, 1, 2, 6, 3, 7, 2, 6, 6, 6, 4, 4, 6, 6, 4, 4, 3, 3, 6, 2, 5, 1, 6, 2, 6, 6, 4, 4, 6, 6, 4, 4, 6, 6, 4, 4, 2, 2, 4, 4, 4, 4, 1, 3, 4, 4, 3, 5, 6, 6, 4, 4, 2, 2, 4, 4, 4, 4, 3, 1, 4, 4, 5, 3, 3, 3, 6, 2, 1, 5, 6, 2, 2, 2, 4, 4, 2, 2, 4, 4, 5, 5, 2, 6, 3, 7, 2, 6, 2, 2, 4, 4, 2, 2, 4, 4, 6, 6, 4, 4
Offset: 0

Views

Author

Carl R. White, Jan 16 2008

Keywords

Examples

			6! = 720 decimal = 1320 octal, so a(6) = 2.
		

Crossrefs

Programs

  • Maple
    P:= 1: E:= 0: a[0]:= 1:
    for n from 1 to 100 do
      v:= padic:-ordp(n,2);
      P:= P*(n/2^v) mod 8;
      E:= E + v;
      if E mod 3 = 0 then a[n]:= P
      elif E mod 3 = 1 then a[n]:= 2*(P mod 4)
      else a[n]:= 4
      fi
    od:
    seq(a[n],n=0..100); # Robert Israel, Sep 26 2018
  • Mathematica
    Table[IntegerDigits[FromDigits[Reverse[IntegerDigits[n!,8]]]][[1]],{n,0,100}] (* Harvey P. Dale, Nov 29 2024 *)

Formula

From Robert Israel, Sep 26 2018: (Start)
If A011371(n) == 0 (mod 3) then a(n) = A049606(n) mod 8.
If A011371(n) == 1 (mod 3) then a(n) = 2*(A049606(n) mod 4).
If A011371(n) == 2 (mod 3) then a(n) = 4. (End)

A003148 a(n+1) = a(n) + 2n*(2n+1)*a(n-1), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 7, 27, 321, 2265, 37575, 390915, 8281665, 114610545, 2946939975, 51083368875, 1542234996225, 32192256321225, 1114841223671175, 27254953356505875, 1064057291370698625, 29845288035840902625, 1296073464766972266375, 41049997128507054562875
Offset: 0

Views

Author

Keywords

Comments

Numerators of sequence of fractions with e.g.f. 1/((1-x)*(1+x)^(1/2)). The denominators are successive powers of 2.
a(n) is the coefficient of x^n in arctan(sqrt(2*x/(1-x)))/sqrt(2*x*(1-x)) multiplied by (2*n+1)!!.
This sequence is the linking pin between the a(n) formulas of the ED1, ED2, ED3 and ED4 array rows, see A167552, A167565, A167580 and A167591. - Johannes W. Meijer, Nov 23 2009

Examples

			arctan(sqrt(2*x/(1-x)))/sqrt(2*x*(1-x)) = 1 + 1/3*x + 7/15*x^2 + 9/35*x^3 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003148 n = a003148_list !! n
    a003148_list = 1 : 1 : zipWith (+) (tail a003148_list)
                              (zipWith (*) (tail a002943_list) a003148_list)
    -- Reinhard Zumkeller, Nov 22 2011
    
  • Magma
    [n le 2 select 1 else Self(n-1) + 2*(n-2)*(2*n-3)*Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 04 2022
    
  • Maple
    # double factorial of odd "l" df := proc(l) local n; n := iquo(l,2); RETURN( factorial(l)/2^n/factorial(n)); end: x := 1; for n from 1 to 15 do if n mod 2 = 0 then x := 2*n*x+df(2*n-1); else x := 2*n*x-df(2*n-1); fi; print(x); od; quit
  • Mathematica
    a[n_] := a[n] = (-1)^n*(2n - 1)!! + 2n*a[n - 1]; a[0] = 1; Table[ a[n], {n, 0, 14}] (* Jean-François Alcover, Dec 01 2011, after R. J. Mathar *)
    a[ n_] := If[ n < 0, 0, (2 n + 1)!! Hypergeometric2F1[ -n, 1/2, 3/2, 2]]; (* Michael Somos, Apr 20 2018 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / ((1 - 2 x) Sqrt[1 + 2 x]), {x, 0, n}]]; (* Michael Somos, Apr 20 2018 *)
    RecurrenceTable[{a[0]==a[1]==1,a[n+1]==a[n]+2n(2n+1)a[n-1]},a,{n,20}] (* Harvey P. Dale, Jul 27 2019 *)
  • PARI
    Vec(serlaplace(1/(sqrt(1+2*x + O(x^20))*(1-2*x)))) \\ Andrew Howroyd, Feb 05 2018
    
  • SageMath
    @CachedFunction
    def a(n): return 1 if (n<2) else a(n-1) + 2*(n-1)*(2*n-1)*a(n-2) # a = A003148
    [a(n) for n in range(31)] # G. C. Greubel, Nov 04 2022

Formula

a(n) = (-1)^n*(2n-1)!! + 2*n*a(n-1) with (2n-1)!! = 1*3*5*..*(2n-1) the double factorial. - R. J. Mathar, Jun 12 2003
a(n) = ((2*n+1)!!/4) * Integral_{-Pi..Pi} cos(x)^n * cos(x/2) dx. - R. J. Mathar, Jun 30 2003
a(n) = (2n+1)!! 2F1(-n, 1/2;3/2;2). - R. J. Mathar, Jun 30 2003
In terms of the (terminating) Gauss hypergeometric function/series, 2F1(., .; .; 2), a(n) is a special case of the family of integer sequences defined by a(m, n) = ((2*n+2*m+1)!!/(2*m+1)) * 2F1(-n, m+1/2; m+3/2; 2), for m >= 0, n >= 0. An integral form can be seen as a(m, n) = ((2*n+2*m+1)!!/4) * Integral_{-Pi..Pi} (sin(x/2))^(2*m) * (cos(x))^n * cos(x/2) dx. A recurrence property is 4*(n+1)*a(m, n) = (2*m-1)*a(m-1, n+1) + (-1)^n*(2*n+2*m+1)!!. Sequences that have these properties are a(0, n) = this sequence, a(1, n) = A077568, a(2, n) = A084543. - R. J. Mathar, Jun 30 2003
E.g.f.: 1/(sqrt(1+2*x)*(1-2*x)). - Vladeta Jovovic, Oct 12 2003
a(n) = (2^n)*n!*A123746(n)/A046161(n) = (2^n)*n!*Sum_{k=0..n} binomial(2*k,k)*(-1/4)^k. From the e.g.f. - Wolfdieter Lang, Oct 06 2008
a(n) = A049606(n)*A123746(n). - Johannes W. Meijer, Nov 23 2009
a(n) = A091520(n) * n! / 2^n. - Michael Somos, Mar 17 2011

Extensions

a(16)-a(20) from Andrew Howroyd, Feb 05 2018

A156769 a(n) = denominator(2^(2*n-2)/factorial(2*n-1)).

Original entry on oeis.org

1, 3, 15, 315, 2835, 155925, 6081075, 638512875, 10854718875, 1856156927625, 194896477400625, 49308808782358125, 3698160658676859375, 1298054391195577640625, 263505041412702261046875, 122529844256906551386796875, 4043484860477916195764296875
Offset: 1

Views

Author

Johannes W. Meijer, Feb 15 2009

Keywords

Comments

Resembles A036279, the denominators in the Taylor series for tan(x). The first difference occurs at a(12).
The numerators of the two formulas for this sequence lead to A001316, Gould's sequence.
Stephen Crowley indicated on Aug 25 2008 that a(n) = denominator(Zeta(2*n)/Zeta(1-2*n)) and here numerator((Zeta(2*n)/Zeta(1-2*n))/(2*(-1)^(n)*(Pi)^(2*n))) leads to Gould's sequence.
This sequence appears in the Eta and Zeta triangles A160464 and A160474. Its resemblance to the sequence of the denominators of the Taylor series for tan(x) led to the conjecture A156769(n) = A036279(n)*A089170(n-1). - Johannes W. Meijer, May 24 2009

Crossrefs

Cf. A036279 Denominators in Taylor series for tan(x).
Cf. A001316 Gould's sequence appears in the numerators.
Cf. A000265, A036279, A089170, A117972, A160464, A160469 (which resembles the numerators of the Taylor series for tan(x)), A160474. - Johannes W. Meijer, May 24 2009

Programs

  • Magma
    [Denominator(4^(n-1)/Factorial(2*n-1)): n in [1..25]]; // G. C. Greubel, Jun 19 2021
    
  • Maple
    a := n ->(2*n-1)!*2^(add(i,i=convert(n-1,base,2))-2*n+2); # Peter Luschny, May 02 2009
  • Mathematica
    a[n_] := Denominator[4^(n-1)/(2n-1)!];
    Array[a, 15] (* Jean-François Alcover, Jun 20 2018 *)
  • Sage
    [denominator(4^(n-1)/factorial(2*n-1)) for n in (1..25)] # G. C. Greubel, Jun 19 2021

Formula

a(n) = denominator( Product_{k=1..n-1} 2/(k*(2*k+1)) ).
G.f.: (1/2)*z^(1/2)*sinh(2*z^(1/2)).
From Johannes W. Meijer, May 24 2009: (Start)
a(n) = abs(A117972(n))/A000265(n).
a(n) = A036279(n)*A089170(n-1). (End)
a(n) = A049606(2*n-1). - Zhujun Zhang, May 29 2019

A117972 Numerator of zeta'(-2n), n >= 0.

Original entry on oeis.org

1, -1, 3, -45, 315, -14175, 467775, -42567525, 638512875, -97692469875, 9280784638125, -2143861251406875, 147926426347074375, -48076088562799171875, 9086380738369043484375, -3952575621190533915703125
Offset: 0

Views

Author

Eric W. Weisstein, Apr 06 2006

Keywords

Comments

In A160464 the coefficients of the ES1 matrix are defined. This matrix led to the discovery that the successive differences of the ES1[1-2*m,n] coefficients for m = 1, 2, 3, ..., are equal to the values of zeta'(-2n), see also A094665 and A160468. - Johannes W. Meijer, May 24 2009
A048896(n), n >= 1: Numerators of Maclaurin series for 1 - ((sin x)/x)^2,
a(n), n >= 2: Denominators of Maclaurin series for 1 - ((sin x)/x)^2, the correlation function in Montgomery's pair correlation conjecture. - Daniel Forgues, Oct 16 2011
From Andrey Zabolotskiy, Sep 23 2021: (Start)
zeta'(-2n), which is mentioned in the Name, is irrational. For n > 0, a(n) is the numerator of the rational fraction g(n) = Pi^(2n)*zeta'(-2n)/zeta(2n+1). The denominator is 4*A048896(n-1). g(n) = f(n) for n > 0, where f(n) is given in the Formula section. Also, f(n) = Bernoulli(2n)/z(n)/4 (see Formula section) for all n.
For n = 0, zeta'(0) = -log(2Pi)/2, g(0) can be set to 0 because of the infinite denominator. However, a(0) is set to 1 because it is the numerator of f(0).
It seems that -4*f(n)*alpha_n = A000182(n), where alpha_n = A191657(n, p(n)) / A191658(n, p(n)) [where p(n) = A000041(n)] is the n-th "elementary coefficient" from the paper by Izaurieta et al. (End)

Examples

			-1/4, 3/4, -45/8, 315/4, -14175/8, 467775/8, -42567525/16, ...
-zeta(3)/(4*Pi^2), (3*zeta(5))/(4*Pi^4), (-45*zeta(7))/(8*Pi^6), (315*zeta(9))/(4*Pi^8), (-14175*zeta(11))/(8*Pi^10), ...
		

Crossrefs

From Johannes W. Meijer, May 24 2009: (Start)
Absolute values equal row sums of A160468. (End)

Programs

  • Maple
    # Without rational arithmetic
    a := n -> (-1)^n*(2*n)!*2^(add(i,i=convert(n,base,2))-2*n);
    # Peter Luschny, May 02 2009
  • Mathematica
    Table[Numerator[(2 n)!/2^(2 n + 1) (-1)^n], {n, 0, 30}]
  • Maxima
    L:taylor(1/x*sin(sqrt(x))^2,x,0,15); makelist(denom(coeff(L,x,n))*(-1)^(n+1),n,0,15); /* Vladimir Kruchinin, May 30 2011 */

Formula

a(n) = numerator(f(n)) where f(n) = (2*n)!/2^(2*n + 1)(-1)^n, from the Mathematica code.
From Terry D. Grant, May 28 2017: (Start)
|a(n)| = A049606(2n).
a(n) = -numerator(Bernoulli(2n)/z(n)) where Bernoulli(2n) = A000367(n) / A002445(n) and z(n) = A046988(n) / A002432(n) for n > 0. (End) [Corrected by Andrey Zabolotskiy, Sep 23 2021]

Extensions

First term added, offset changed and edited by Johannes W. Meijer, May 15 2009
Showing 1-10 of 34 results. Next