A129902 Smallest multiple of n having exactly twice as many divisors as n.
2, 6, 6, 12, 10, 24, 14, 24, 18, 30, 22, 60, 26, 42, 30, 48, 34, 72, 38, 60, 42, 66, 46, 120, 50, 78, 54, 84, 58, 120, 62, 96, 66, 102, 70, 180, 74, 114, 78, 120, 82, 168, 86, 132, 90, 138, 94, 240, 98, 150, 102, 156, 106, 216, 110, 168, 114, 174, 118, 360, 122, 186, 126
Offset: 1
Keywords
Examples
n=6 has 4 divisors. a(6) is not 12 or 18 because 12 and 18 have only 6 divisors as opposed to the 8 divisors required by the definition.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A000005.
Programs
-
Maple
A129902 := proc(n) local m; m := 2 ; while numtheory[tau](m*n)<> 2*numtheory[tau](n) do m := m+1 ; od ; RETURN(m*n) ; end: for n from 1 to 100 do printf("%d, ",A129902(n)) ; od ; # R. J. Mathar, Jun 07 2007
-
Mathematica
a[n_] := Module[{}, in = 2; While[Length[Divisors[in*n]] != 2*Length[Divisors[n]], in++ ]; in*n]; Table[a[i], {i, 1, 70}] (* Stefan Steinerberger, Jun 07 2007 *)
-
PARI
a(n) = {my(k=1); while (numdiv(n*k) != 2*numdiv(n), k++); n*k;} \\ Michel Marcus, Sep 15 2020