A129915 Irregular triangle read by rows: T(n, k) = f(n, A113474(n-1) - k), where f(n, k) = (n-1)!/2^k if (n-1)!/2^k is an integer, otherwise f(n, k) = 0.
1, 1, 1, 2, 3, 6, 3, 6, 12, 24, 15, 30, 60, 120, 45, 90, 180, 360, 720, 315, 630, 1260, 2520, 5040, 315, 630, 1260, 2520, 5040, 10080, 20160, 40320, 2835, 5670, 11340, 22680, 45360, 90720, 181440, 362880, 14175, 28350, 56700, 113400, 226800, 453600
Offset: 1
Examples
Irregular triangle begins as: 1; 1; 1, 2; 3, 6; 3, 6, 12, 24; 15, 30, 60, 120; 45, 90, 180, 360, 720; 315, 630, 1260, 2520, 5040; 315, 630, 1260, 2520, 5040, 10080, 20160, 40320;
Links
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
Programs
-
Magma
A113474:= func< n | n+1 - Multiplicity(Intseq(n, 2), 1) >; f:= func< n,k | IsIntegral(Factorial(n-1)/2^k) select Factorial(n-1)/2^k else 0 >; A129915:= func< n,k | f(n, A113474(n-1) - k) >; [A129915(n,k): k in [1..A113474(n-1)], n in [1..12]]; // G. C. Greubel, Sep 28 2024
-
Mathematica
A113474[n_]:= n+1 - DigitCount[n, 2, 1]; f[n_, k_]:= If[IntegerQ[(n-1)!/2^k], (n-1)!/2^k, 0]; A129915[n_, k_]:= f[n, A113474[n-1]-k]; Table[A129915[n,k], {n,15}, {k,A113474[n-1]}]//Flatten (* modified by G. C. Greubel, Sep 28 2024 *)
-
SageMath
def A113474(n): return n+1 - sum((n+0).digits(2)) def f(n,k): return factorial(n-1)/2^k if (factorial(n-1)/2^k).is_integer() else 0 def A129915(n,k): return f(n, A113474(n-1) - k) flatten([[A129915(n,k) for k in range(1, A113474(n-1)+1)] for n in range(1,16)]) # G. C. Greubel, Sep 28 2024
Formula
Extensions
Edited by G. C. Greubel, Sep 28 2024