cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129915 Irregular triangle read by rows: T(n, k) = f(n, A113474(n-1) - k), where f(n, k) = (n-1)!/2^k if (n-1)!/2^k is an integer, otherwise f(n, k) = 0.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 3, 6, 12, 24, 15, 30, 60, 120, 45, 90, 180, 360, 720, 315, 630, 1260, 2520, 5040, 315, 630, 1260, 2520, 5040, 10080, 20160, 40320, 2835, 5670, 11340, 22680, 45360, 90720, 181440, 362880, 14175, 28350, 56700, 113400, 226800, 453600
Offset: 1

Views

Author

Roger L. Bagula, Jun 05 2007

Keywords

Examples

			Irregular triangle begins as:
    1;
    1;
    1,   2;
    3,   6;
    3,   6,   12,   24;
   15,  30,   60,  120;
   45,  90,  180,  360,  720;
  315, 630, 1260, 2520, 5040;
  315, 630, 1260, 2520, 5040, 10080, 20160, 40320;
		

Crossrefs

Programs

  • Magma
    A113474:= func< n | n+1 - Multiplicity(Intseq(n, 2), 1) >;
    f:= func< n,k | IsIntegral(Factorial(n-1)/2^k) select Factorial(n-1)/2^k else 0 >;
    A129915:= func< n,k | f(n, A113474(n-1) - k) >;
    [A129915(n,k): k in [1..A113474(n-1)], n in [1..12]]; // G. C. Greubel, Sep 28 2024
    
  • Mathematica
    A113474[n_]:= n+1 - DigitCount[n, 2, 1];
    f[n_, k_]:= If[IntegerQ[(n-1)!/2^k], (n-1)!/2^k, 0];
    A129915[n_, k_]:= f[n, A113474[n-1]-k];
    Table[A129915[n,k], {n,15}, {k,A113474[n-1]}]//Flatten (* modified by G. C. Greubel, Sep 28 2024 *)
  • SageMath
    def A113474(n): return n+1 - sum((n+0).digits(2))
    def f(n,k): return factorial(n-1)/2^k if (factorial(n-1)/2^k).is_integer() else 0
    def A129915(n,k): return f(n, A113474(n-1) - k)
    flatten([[A129915(n,k) for k in range(1, A113474(n-1)+1)] for n in range(1,16)]) # G. C. Greubel, Sep 28 2024

Formula

T(n, k) = f(n, A113474(n-1) - k), where f(n, k) = (n-1)!/2^k if (n-1)!/2^k is an integer, otherwise f(n, k) = 0, for n >= 1, 1 <= k <= A113474(n-1).

Extensions

Edited by G. C. Greubel, Sep 28 2024