cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129921 Number of generalized compositions of n: words b_1^{i_1}b_2^{i_2}...b_k^{i_k} such that b_j's and j_i's are positive integers and sum b_j*i_j = n.

Original entry on oeis.org

1, 1, 3, 7, 18, 43, 108, 263, 651, 1599, 3942, 9698, 23890, 58805, 144806, 356512, 877820, 2161285, 5321485, 13102246, 32259890, 79428762, 195566238, 481514453, 1185564348, 2919044646, 7187145712, 17695877607, 43570023304, 107276219947, 264130857268, 650331536681, 1601218102939
Offset: 0

Views

Author

Pawel Hitczenko (phitczenko(AT)math.drexel.edu), Jun 05 2007

Keywords

Comments

If the additional constraint was added that b_j does not equal to b_{j+1}, the sequence generated would be the compositions (ordered partitions) of integers.
This is a variant of compositions of compositions: for each composition of n, write it in value^repetition form, and then choose a composition for each repetition factor. - Franklin T. Adams-Watters, May 27 2010
INVERT transform of tau (A000005). - Alois P. Heinz, Feb 11 2021

Examples

			a(3)=7 because we can write
3^{1},
1^{2} 2^{1},
2^{1} 1^{1},
1^{3},
1^{2} 1^{1},
1^{1} 1^{2},
1^{1} 1^{1} 1^{1}.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(add(a(n-i*j), j=1..n/i), i=1..n))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 22 2017
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*numtheory[tau](i), i=1..n))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    nmax = 50; CoefficientList[Series[1/(1 - Sum[DivisorSigma[0, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 06 2017 *)
  • PARI
    N=66;  A=vector(66);  A[0+1]=1;
    for (n=1,N-1, A[n+1] = sum(k=0,n-1,A[k+1]*sigma(n-k,0)) );
    A  /* Joerg Arndt, Apr 28 2013 */
    
  • PARI
    N = 66;  x = 'x + O('x^N);
    gf = 1/(1-sum(k=1,N, x^k/(1-x^k)) );
    Vec(gf)  /* Joerg Arndt, Apr 28 2013 */

Formula

G.f.: 1/(1 - Sum_{k>0} z^k/(1-z^k)).
G.f.: 1/(1 - Sum_{k>0} tau(k) x^k), where tau(k) is the number of divisors of k. - Franklin T. Adams-Watters, May 27 2010
G.f.: 1/(1 + x * (d/dx) log(Product_{k>=1} (1 - x^k)^(1/k))). - Ilya Gutkovskiy, Oct 18 2018
a(n) = Sum_{k=0..n-1} tau(n-k)*a(k) for n>0 with a(0) = 1. - Ridouane Oudra, Mar 13 2020

Extensions

Edited by Franklin T. Adams-Watters, May 27 2010
More terms from Joerg Arndt, Apr 28 2013