A295739
Expansion of e.g.f. exp(Sum_{k>=1} d(k)*x^k/k!), where d(k) is the number of divisors of k (A000005).
Original entry on oeis.org
1, 1, 3, 9, 36, 158, 802, 4434, 26978, 176637, 1243528, 9316519, 74065506, 621187700, 5480130494, 50662481722, 489552042241, 4931215686119, 51668848043427, 561981734692781, 6333882472789914, 73850048237680936, 889461218944314524, 11051067390893340510
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..553
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Exponential Transform
-
a:=series(exp(add(tau(k)*x^k/k!,k=1..100)),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 27 2019
-
nmax = 23; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] DivisorSigma[0, k] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
A340903
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * sigma_0(k) * a(n-k).
Original entry on oeis.org
1, 1, 4, 20, 139, 1192, 12318, 148318, 2041754, 31616757, 544005172, 10296204096, 212589150300, 4755177958104, 114545293676588, 2956316416222300, 81386676426000157, 2380590235918735576, 73729207700492304684, 2410324868012471929670, 82944575892433740648996
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] DivisorSigma[0, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
nmax = 20; CoefficientList[Series[1/(1 - Sum[Sum[x^(i j)/(i j)!, {j, 1, nmax}], {i, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, numdiv(k)*x^k/k!)))) \\ Seiichi Manyama, Mar 29 2022
-
a(n) = if(n==0, 1, sum(k=1, n, numdiv(k)*binomial(n, k)*a(n-k))); \\ Seiichi Manyama, Mar 29 2022
A327736
Expansion of 1 / (1 - Sum_{i>=1, j>=0} x^(i*2^j)).
Original entry on oeis.org
1, 1, 3, 6, 16, 35, 85, 195, 465, 1081, 2549, 5962, 14016, 32847, 77119, 180866, 424466, 995753, 2336497, 5481712, 12861904, 30176671, 70802913, 166120289, 389761751, 914476925, 2145596677, 5034105820, 11811287658, 27712248159, 65019931641, 152553127471, 357928110743
Offset: 0
-
nmax = 32; CoefficientList[Series[1/(1 - Sum[x^(2^k)/(1 - x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[IntegerExponent[2 k, 2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]
A300671
Expansion of 1/(1 - Sum_{k>=1} x^prime(k)/(1 - x^prime(k))).
Original entry on oeis.org
1, 0, 1, 1, 2, 3, 6, 8, 15, 23, 40, 63, 108, 172, 290, 471, 782, 1280, 2119, 3474, 5741, 9432, 15557, 25590, 42180, 69413, 114371, 188276, 310136, 510637, 841045, 1384883, 2280831, 3755862, 6185457, 10185941, 16774695, 27624215, 45492412, 74916559, 123374127, 203172520, 334587577
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-i)*nops(ifactors(i)[2]), i=1..n))
end:
seq(a(n), n=0..42); # Alois P. Heinz, Feb 11 2021
-
nmax = 42; CoefficientList[Series[1/(1 - Sum[x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 42; CoefficientList[Series[1/(1 - Sum[PrimeNu[k] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[PrimeNu[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 42}]
A320019
Coefficients of polynomials related to the number of divisors, triangle read by rows, T(n,k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 2, 4, 1, 0, 3, 8, 6, 1, 0, 2, 14, 18, 8, 1, 0, 4, 20, 41, 32, 10, 1, 0, 2, 28, 78, 92, 50, 12, 1, 0, 4, 37, 132, 216, 175, 72, 14, 1, 0, 3, 44, 209, 440, 490, 298, 98, 16, 1, 0, 4, 58, 306, 814, 1172, 972, 469, 128, 18, 1
Offset: 0
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 2, 1
[3] 0, 2, 4, 1
[4] 0, 3, 8, 6, 1
[5] 0, 2, 14, 18, 8, 1
[6] 0, 4, 20, 41, 32, 10, 1
[7] 0, 2, 28, 78, 92, 50, 12, 1
[8] 0, 4, 37, 132, 216, 175, 72, 14, 1
[9] 0, 3, 44, 209, 440, 490, 298, 98, 16, 1
-
P := proc(n, x) option remember; if n = 0 then 1 else
x*add(numtheory:-tau(n-k)*P(k,x), k=0..n-1) fi end:
Trow := n -> seq(coeff(P(n, x), x, k), k=0..n):
seq(lprint([n], Trow(n)), n=0..9);
# second Maple program:
T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, `if`(n=0, 0, numtheory[tau](n)), (q->
add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Feb 01 2021
# Uses function PMatrix from A357368.
PMatrix(10, NumberTheory:-tau); # Peter Luschny, Oct 19 2022
-
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
If[k == 1, If[n == 0, 0, DivisorSigma[0, n]],
With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n-j, k-q], {j, 0, n}]]]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 11 2021, after Alois P. Heinz *)
A320650
Expansion of 1/(1 - Sum_{k>=1} x^k/(1 - x^(2*k))).
Original entry on oeis.org
1, 1, 2, 5, 10, 22, 48, 103, 222, 481, 1038, 2241, 4842, 10456, 22582, 48776, 105342, 227514, 491386, 1061281, 2292132, 4950510, 10692006, 23092378, 49874474, 107717891, 232646956, 502466304, 1085216744, 2343829586, 5062156694, 10933145610, 23613191032
Offset: 0
-
a:=series(1/(1-add(x^k/(1-x^(2*k)),k=1..100)),x=0,33): seq(coeff(a,x,n),n=0..32); # Paolo P. Lava, Apr 02 2019
-
nmax = 32; CoefficientList[Series[1/(1 - Sum[x^k/(1 - x^(2 k)), {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 32; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1)/2)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Sum[Mod[d, 2], {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]
A327739
Expansion of 1 / (1 - Sum_{i>=1} Sum_{j=1..i} x^(i*j)).
Original entry on oeis.org
1, 1, 2, 4, 9, 18, 38, 78, 163, 338, 703, 1458, 3031, 6293, 13073, 27150, 56396, 117130, 243289, 505310, 1049552, 2179938, 4527804, 9404355, 19533126, 40570816, 84266725, 175024267, 363530253, 755062265, 1568285122, 3257371187, 6765649491, 14052439669
Offset: 0
-
a:= proc(n) option remember; `if`(n<1, 1, add(a(n-i)*
ceil(numtheory[sigma][0](i)/2), i=1..n))
end:
seq(a(n), n=0..34); # Alois P. Heinz, Sep 23 2019
-
nmax = 33; CoefficientList[Series[1/(1 - Sum[x^(k^2)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Floor[(DivisorSigma[0, k] + 1)/2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]
A129922
Number of 3-Carlitz compositions of n (or, more generally p-Carlitz compositions, p > 1), i.e., words b_1^{i_1}b_2^{i_2}...b_k^{i_k} such that the b_j's and i_j's are positive integers for which Sum_{j=1..k} i_j * b_j = n and, for all j, i_j < p and if b_j = b_(j+1) then i_j + i_(j+1) is not equal to p.
Original entry on oeis.org
1, 1, 3, 4, 12, 22, 51, 101, 225, 465, 1008, 2111, 4528, 9560, 20402, 43222, 92018, 195256, 415243, 881758, 1874288, 3981318, 8460906, 17975132, 38196045, 81152769, 172436680, 366376845, 778476016, 1654054258, 3514494256, 7467412436, 15866507485, 33712418692, 71630875356, 152198161794
Offset: 0
Pawel Hitczenko (phitczenko(AT)math.drexel.edu), Jun 05 2007
a(3)=4 because, for p=3, we can write:
3^{1},
1^{1} 2^{1},
2^{1} 1^{1},
1^{1} 1^{1} 1^{1}.
-
b:= proc(n, i, j) option remember;
`if`(n=0, 1, add(add(`if`(k=i and m+j=3, 0,
b(n-k*m, k, m)), m=1..min(2, n/k)), k=1..n))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..40); # Alois P. Heinz, Jul 22 2017
-
b[n_, i_, j_] := b[n, i, j] = If[n == 0, 1, Sum[Sum[If[k == i && m + j == 3, 0, b[n - k m, k, m]], {m, 1, Min[2, n/k]}], {k, 1, n}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 40] (* Jean-François Alcover, Nov 10 2020, after Alois P. Heinz *)
-
N = 66; x = 'x + O('x^N); p=3;
gf = 1/(1-sum(k=1,N, x^k/(1-x^k)-p*x^(k*p)/(1-x^(k*p))));
Vec(gf) /* Joerg Arndt, Apr 28 2013 */
A300672
Expansion of 1/(1 - Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k))).
Original entry on oeis.org
1, 0, 1, 1, 3, 3, 8, 10, 23, 32, 64, 98, 187, 296, 543, 891, 1595, 2660, 4694, 7924, 13854, 23556, 40940, 69939, 121122, 207490, 358517, 615292, 1061635, 1824013, 3144404, 5406257, 9314645, 16021922, 27595176, 47478950, 81757104, 140691461, 242232918, 416890645, 717712748, 1235289624
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-i)*numtheory[bigomega](i), i=1..n))
end:
seq(a(n), n=0..42); # Alois P. Heinz, Feb 11 2021
-
nmax = 41; CoefficientList[Series[1/(1 - Sum[Boole[PrimePowerQ[k]] x^k/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 41; CoefficientList[Series[1/(1 - Sum[PrimeOmega[k] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[PrimeOmega[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 41}]
A304963
Expansion of 1/(1 - Sum_{i>=1, j>=1, k>=1} x^(i*j*k)).
Original entry on oeis.org
1, 1, 4, 10, 31, 82, 241, 664, 1898, 5316, 15058, 42374, 119718, 337432, 952373, 2685906, 7578248, 21376331, 60306495, 170120330, 479922212, 1353855927, 3819280961, 10774233218, 30394408336, 85743168417, 241883489742, 682358211402, 1924947591447, 5430317571250, 15319043353639
Offset: 0
-
A:= proc(n, k) option remember; `if`(k=1, 1,
add(A(d, k-1), d=numtheory[divisors](n)))
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(A(j, 3)*a(n-j), j=1..n))
end:
seq(a(n), n=0..35); # Alois P. Heinz, May 22 2018
-
nmax = 30; CoefficientList[Series[1/(1 - Sum[x^(i j k), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}]), {x, 0, nmax}], x]
nmax = 30; CoefficientList[Series[1/(1 - Sum[Sum[DivisorSigma[0, d], {d, Divisors[k]}] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Sum[DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 30}]
Showing 1-10 of 21 results.
Comments