cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A295739 Expansion of e.g.f. exp(Sum_{k>=1} d(k)*x^k/k!), where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

1, 1, 3, 9, 36, 158, 802, 4434, 26978, 176637, 1243528, 9316519, 74065506, 621187700, 5480130494, 50662481722, 489552042241, 4931215686119, 51668848043427, 561981734692781, 6333882472789914, 73850048237680936, 889461218944314524, 11051067390893340510
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 26 2017

Keywords

Comments

Exponential transform of A000005.

Crossrefs

Programs

  • Maple
    a:=series(exp(add(tau(k)*x^k/k!,k=1..100)),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] DivisorSigma[0, k] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]

Formula

E.g.f.: exp(Sum_{k>=1} A000005(k)*x^k/k!).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1)*A000005(k)*a(n-k).

A340903 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * sigma_0(k) * a(n-k).

Original entry on oeis.org

1, 1, 4, 20, 139, 1192, 12318, 148318, 2041754, 31616757, 544005172, 10296204096, 212589150300, 4755177958104, 114545293676588, 2956316416222300, 81386676426000157, 2380590235918735576, 73729207700492304684, 2410324868012471929670, 82944575892433740648996
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 26 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] DivisorSigma[0, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
    nmax = 20; CoefficientList[Series[1/(1 - Sum[Sum[x^(i j)/(i j)!, {j, 1, nmax}], {i, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, numdiv(k)*x^k/k!)))) \\ Seiichi Manyama, Mar 29 2022
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, numdiv(k)*binomial(n, k)*a(n-k))); \\ Seiichi Manyama, Mar 29 2022

Formula

E.g.f.: 1 / (1 - Sum_{i>=1} Sum_{j>=1} x^(i*j) / (i*j)!).
E.g.f.: 1 / (1 - Sum_{k>=1} sigma_0(k) * x^k/k!). - Seiichi Manyama, Mar 29 2022

A327736 Expansion of 1 / (1 - Sum_{i>=1, j>=0} x^(i*2^j)).

Original entry on oeis.org

1, 1, 3, 6, 16, 35, 85, 195, 465, 1081, 2549, 5962, 14016, 32847, 77119, 180866, 424466, 995753, 2336497, 5481712, 12861904, 30176671, 70802913, 166120289, 389761751, 914476925, 2145596677, 5034105820, 11811287658, 27712248159, 65019931641, 152553127471, 357928110743
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Comments

Invert transform of A001511.

Crossrefs

Programs

  • Mathematica
    nmax = 32; CoefficientList[Series[1/(1 - Sum[x^(2^k)/(1 - x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[IntegerExponent[2 k, 2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]

Formula

G.f.: 1 / (1 - Sum_{k>=0} x^(2^k) / (1 - x^(2^k))).
a(0) = 1; a(n) = Sum_{k=1..n} A001511(k) * a(n-k).

A300671 Expansion of 1/(1 - Sum_{k>=1} x^prime(k)/(1 - x^prime(k))).

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 6, 8, 15, 23, 40, 63, 108, 172, 290, 471, 782, 1280, 2119, 3474, 5741, 9432, 15557, 25590, 42180, 69413, 114371, 188276, 310136, 510637, 841045, 1384883, 2280831, 3755862, 6185457, 10185941, 16774695, 27624215, 45492412, 74916559, 123374127, 203172520, 334587577
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 11 2018

Keywords

Comments

Invert transform of A001221.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*nops(ifactors(i)[2]), i=1..n))
        end:
    seq(a(n), n=0..42);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    nmax = 42; CoefficientList[Series[1/(1 - Sum[x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 42; CoefficientList[Series[1/(1 - Sum[PrimeNu[k] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[PrimeNu[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 42}]

Formula

G.f.: 1/(1 - Sum_{k>=2} A001221(k)*x^k).

A320019 Coefficients of polynomials related to the number of divisors, triangle read by rows, T(n,k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 2, 4, 1, 0, 3, 8, 6, 1, 0, 2, 14, 18, 8, 1, 0, 4, 20, 41, 32, 10, 1, 0, 2, 28, 78, 92, 50, 12, 1, 0, 4, 37, 132, 216, 175, 72, 14, 1, 0, 3, 44, 209, 440, 490, 298, 98, 16, 1, 0, 4, 58, 306, 814, 1172, 972, 469, 128, 18, 1
Offset: 0

Views

Author

Peter Luschny, Oct 03 2018

Keywords

Comments

Column k is the k-fold self-convolution of tau (A000005). - Alois P. Heinz, Feb 01 2021

Examples

			Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 2,  1
[3] 0, 2,  4,   1
[4] 0, 3,  8,   6,   1
[5] 0, 2, 14,  18,   8,   1
[6] 0, 4, 20,  41,  32,  10,   1
[7] 0, 2, 28,  78,  92,  50,  12,  1
[8] 0, 4, 37, 132, 216, 175,  72, 14,  1
[9] 0, 3, 44, 209, 440, 490, 298, 98, 16, 1
		

Crossrefs

Columns k=0-4 give: A000007, A000005, A055507, A191829, A375002.
Row sums are A129921.
T(2n,n) gives A340992.
Cf. A319083.

Programs

  • Maple
    P := proc(n, x) option remember; if n = 0 then 1 else
    x*add(numtheory:-tau(n-k)*P(k,x), k=0..n-1) fi end:
    Trow := n -> seq(coeff(P(n, x), x, k), k=0..n):
    seq(lprint([n], Trow(n)), n=0..9);
    # second Maple program:
    T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
          `if`(k=1, `if`(n=0, 0, numtheory[tau](n)), (q->
           add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Feb 01 2021
    # Uses function PMatrix from A357368.
    PMatrix(10, NumberTheory:-tau); # Peter Luschny, Oct 19 2022
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
         If[k == 1, If[n == 0, 0, DivisorSigma[0, n]],
         With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n-j, k-q], {j, 0, n}]]]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 11 2021, after Alois P. Heinz *)

Formula

The polynomials are defined by recurrence: p(0,x) = 1 and for n > 0 by
p(n, x) = x*Sum_{k=0..n-1} tau(n-k)*p(k, x).
Sigma[k](n) computes the sum of the k-th power of positive divisors of n. The recurrence applied with k = 0 gives this triangle, with k = 1 gives A319083.
T(n,k) = [x^n] (Sum_{j>=1} tau(j)*x^j)^k. - Alois P. Heinz, Feb 14 2021

A320650 Expansion of 1/(1 - Sum_{k>=1} x^k/(1 - x^(2*k))).

Original entry on oeis.org

1, 1, 2, 5, 10, 22, 48, 103, 222, 481, 1038, 2241, 4842, 10456, 22582, 48776, 105342, 227514, 491386, 1061281, 2292132, 4950510, 10692006, 23092378, 49874474, 107717891, 232646956, 502466304, 1085216744, 2343829586, 5062156694, 10933145610, 23613191032
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 18 2018

Keywords

Comments

Invert transform of A001227.

Crossrefs

Programs

  • Maple
    a:=series(1/(1-add(x^k/(1-x^(2*k)),k=1..100)),x=0,33): seq(coeff(a,x,n),n=0..32); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 32; CoefficientList[Series[1/(1 - Sum[x^k/(1 - x^(2 k)), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1)/2)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Sum[Mod[d, 2], {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]

Formula

G.f.: 1/(1 - Sum_{k>=1} x^(k*(k+1)/2)/(1 - x^k)).
G.f.: 1/(1 + x * (d/dx) log(Product_{k>=1} (1 - x^(2*k-1))^(1/(2*k-1)))).
a(0) = 1; a(n) = Sum_{k=1..n} A001227(k)*a(n-k).

A327739 Expansion of 1 / (1 - Sum_{i>=1} Sum_{j=1..i} x^(i*j)).

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 38, 78, 163, 338, 703, 1458, 3031, 6293, 13073, 27150, 56396, 117130, 243289, 505310, 1049552, 2179938, 4527804, 9404355, 19533126, 40570816, 84266725, 175024267, 363530253, 755062265, 1568285122, 3257371187, 6765649491, 14052439669
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Comments

Invert transform of A038548.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 1, add(a(n-i)*
          ceil(numtheory[sigma][0](i)/2), i=1..n))
        end:
    seq(a(n), n=0..34);  # Alois P. Heinz, Sep 23 2019
  • Mathematica
    nmax = 33; CoefficientList[Series[1/(1 - Sum[x^(k^2)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Floor[(DivisorSigma[0, k] + 1)/2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]

Formula

G.f.: 1 / (1 - Sum_{k>=1} x^(k^2) / (1 - x^k)).
a(0) = 1; a(n) = Sum_{k=1..n} A038548(k) * a(n-k).

A129922 Number of 3-Carlitz compositions of n (or, more generally p-Carlitz compositions, p > 1), i.e., words b_1^{i_1}b_2^{i_2}...b_k^{i_k} such that the b_j's and i_j's are positive integers for which Sum_{j=1..k} i_j * b_j = n and, for all j, i_j < p and if b_j = b_(j+1) then i_j + i_(j+1) is not equal to p.

Original entry on oeis.org

1, 1, 3, 4, 12, 22, 51, 101, 225, 465, 1008, 2111, 4528, 9560, 20402, 43222, 92018, 195256, 415243, 881758, 1874288, 3981318, 8460906, 17975132, 38196045, 81152769, 172436680, 366376845, 778476016, 1654054258, 3514494256, 7467412436, 15866507485, 33712418692, 71630875356, 152198161794
Offset: 0

Views

Author

Pawel Hitczenko (phitczenko(AT)math.drexel.edu), Jun 05 2007

Keywords

Comments

For p=2, the sequence enumerates Carlitz compositions, A003242.

Examples

			a(3)=4 because, for p=3, we can write:
  3^{1},
  1^{1} 2^{1},
  2^{1} 1^{1},
  1^{1} 1^{1} 1^{1}.
		

Crossrefs

Cf. A129921.
Cf. A003242.

Programs

  • Maple
    b:= proc(n, i, j) option remember;
         `if`(n=0, 1, add(add(`if`(k=i and m+j=3, 0,
          b(n-k*m, k, m)), m=1..min(2, n/k)), k=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 22 2017
  • Mathematica
    b[n_, i_, j_] := b[n, i, j] = If[n == 0, 1, Sum[Sum[If[k == i && m + j == 3, 0, b[n - k m, k, m]], {m, 1, Min[2, n/k]}], {k, 1, n}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 40] (* Jean-François Alcover, Nov 10 2020, after Alois P. Heinz *)
  • PARI
    N = 66;  x = 'x + O('x^N);  p=3;
    gf = 1/(1-sum(k=1,N, x^k/(1-x^k)-p*x^(k*p)/(1-x^(k*p))));
    Vec(gf)  /* Joerg Arndt, Apr 28 2013 */

Formula

G.f.: 1/(1 - Sum_{k>0} (z^k/(1-z^k) - 3*z^(k*3)/(1-z^(k*3)))).
For general p the generating function is 1/(1 - Sum_{k>0}(z^k/(1-z^k) - p*z^(k*p)/(1-z^(k*p)))).

Extensions

Added more terms, Joerg Arndt, Apr 28 2013

A300672 Expansion of 1/(1 - Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k))).

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 8, 10, 23, 32, 64, 98, 187, 296, 543, 891, 1595, 2660, 4694, 7924, 13854, 23556, 40940, 69939, 121122, 207490, 358517, 615292, 1061635, 1824013, 3144404, 5406257, 9314645, 16021922, 27595176, 47478950, 81757104, 140691461, 242232918, 416890645, 717712748, 1235289624
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 11 2018

Keywords

Comments

Invert transform of A001222.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*numtheory[bigomega](i), i=1..n))
        end:
    seq(a(n), n=0..42);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    nmax = 41; CoefficientList[Series[1/(1 - Sum[Boole[PrimePowerQ[k]] x^k/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 41; CoefficientList[Series[1/(1 - Sum[PrimeOmega[k] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[PrimeOmega[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 41}]

Formula

G.f.: 1/(1 - Sum_{k>=2} A001222(k)*x^k).

A304963 Expansion of 1/(1 - Sum_{i>=1, j>=1, k>=1} x^(i*j*k)).

Original entry on oeis.org

1, 1, 4, 10, 31, 82, 241, 664, 1898, 5316, 15058, 42374, 119718, 337432, 952373, 2685906, 7578248, 21376331, 60306495, 170120330, 479922212, 1353855927, 3819280961, 10774233218, 30394408336, 85743168417, 241883489742, 682358211402, 1924947591447, 5430317571250, 15319043353639
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Invert transform of A007425.

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k=1, 1,
          add(A(d, k-1), d=numtheory[divisors](n)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(A(j, 3)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, May 22 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[1/(1 - Sum[x^(i j k), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}]), {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[1/(1 - Sum[Sum[DivisorSigma[0, d], {d, Divisors[k]}] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Sum[DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 30}]

Formula

G.f.: 1/(1 - Sum_{k>=1} A007425(k)*x^k).
Showing 1-10 of 21 results. Next