cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129954 Second differences of A129952.

Original entry on oeis.org

1, 3, 6, 14, 32, 72, 160, 352, 768, 1664, 3584, 7680, 16384, 34816, 73728, 155648, 327680, 688128, 1441792, 3014656, 6291456, 13107200, 27262976, 56623104, 117440512, 243269632, 503316480, 1040187392, 2147483648, 4429185024
Offset: 0

Views

Author

Paul Curtz, Jun 10 2007

Keywords

Comments

First differences of A129953: a(n) = A129953(n+1) - A129953(n).
Essentially the same as A078836: a(n) = A078836(n+4) for n > 1.

Crossrefs

Programs

  • Magma
    m:=16; S:=&cat[ [ 1, 2*i ]: i in [0..m] ]; T:=[ &+[ Binomial(j-1, k-1)*S[k]: k in [1..j] ]: j in [1..2*m] ]; U:=[ T[n+1]-T[n]: n in[1..2*m-1] ]; [ U[n+1]-U[n]: n in[1..2*m-2] ]; // Klaus Brockhaus, Jun 17 2007
    
  • PARI
    {m=29; print1(1, ",", 3, ","); for(n=2, m, print1((n+4)*2^(n-2), ","))} \\ Klaus Brockhaus, Jun 17 2007
    
  • Python
    def A129954(n): return n+4<1 else 2*n+1 # Chai Wah Wu, Oct 03 2024

Formula

a(0) = 1, a(1) = 3; for n > 1, a(n) = (n+4)*2^(n-2).
G.f.: (1-x)*(1-2*x^2)/(1-2*x)^2.
Binomial transform of [1, 2, 1, 4, 1, 6, 1, 8, ...]. - Gary W. Adamson, Sep 29 2007
E.g.f.: (x + exp(2*x)*(2 + x))/2. - Stefano Spezia, Oct 04 2024

Extensions

Edited and extended by Klaus Brockhaus, Jun 17 2007