A130005 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+577)^2 = y^2.
0, 35, 1568, 1731, 1908, 10595, 11540, 12567, 63156, 68663, 74648, 369495, 401592, 436475, 2154968, 2342043, 2545356, 12561467, 13651820, 14836815, 73214988, 79570031, 86476688, 426729615, 463769520, 504024467, 2487163856, 2703048243
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,6,-6,0,-1,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{1,0,6,-6,0,-1,1},{0,35,1568,1731,1908,10595,11540},30] (* Harvey P. Dale, May 27 2018 *)
-
PARI
{forstep(n=0, 500000000, [3, 1], if(issquare(2*n^2+1154*n+332929), print1(n, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6)+1154 for n > 6; a(1)=0, a(2)=35, a(3)=1568, a(4)=1731, a(5)=1908, a(6)=10595.
G.f.: x*(35+1533*x+163*x^2-33*x^3-511*x^4-33*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 577*A001652(k) for k >= 0.
Extensions
Edited and two terms added by Klaus Brockhaus, Apr 21 2009
Comments