cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130047 Left half of Pascal's triangle (A034868) modulo 2.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Oct 10 2007

Keywords

Comments

Row sums yield: 1, 1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 4, 2, 4, 4, 8, 1, 2, 2, 4, 2, 4, 4, 8, ...(see A048896).

Examples

			Triangle begins:
1,
1,
1, 0,
1, 1,
1, 0, 0,
1, 1, 0,
1, 0, 1, 0,
1, 1, 1, 1,
1, 0, 0, 0, 0,
1, 1, 0, 0, 0,
1, 0, 1, 0, 0, 0,
1, 1, 1, 1, 0, 0,
1, 0, 0, 0, 1, 0, 0,
1, 1, 0, 0, 1, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0,
...
Triangle (right aligned) begins:
                                  1,
                                1,
                              1,  0,
                            1,  1,
                          1,  0,  0,
                        1,  1,  0,
                      1,  0,  1,  0,
                    1,  1,  1,  1,
                  1,  0,  0,  0,  0,
                1,  1,  0,  0,  0,
              1,  0,  1,  0,  0,  0,
            1,  1,  1,  1,  0,  0,
          1,  0,  0,  0,  1,  0,  0,
        1,  1,  0,  0,  1,  1,  0,
      1,  0,  1,  0,  1,  0,  1,  0,
    1,  1,  1,  1,  1,  1,  1,  1,
  1,  0,  0,  0,  0,  0,  0,  0,  0,
1,  1,  0,  0,  0,  0,  0,  0,  0,
...
		

Crossrefs

Programs

  • Maple
    # From N. J. A. Sloane, Mar 22 2015:
    for n from 0 to 20 do
    lprint(seq(binomial(n,k) mod 2, k=0..floor(n/2))); od:
    # For row sums:
    f:=n->add(binomial(n,k) mod 2, k=0..floor(n/2));
    [seq(f(n),n=0..60)];
  • Mathematica
    Table[Mod[Binomial[n, k], 2], {n, 0, 10}, {k, 0, Floor[n/2]}] (* G. C. Greubel, Aug 12 2017 *)

Formula

T(n,k) = mod(binomial(n, k), 2), 0 <= k <= floor(n/2). - G. C. Greubel, Aug 12 2017

Extensions

Corrected by N. J. A. Sloane, Mar 22 2015 at the suggestion of Kevin Ryde