A130054 Inverse Moebius transform of A023900.
1, 0, -1, -1, -3, 0, -5, -2, -3, 0, -9, 1, -11, 0, 3, -3, -15, 0, -17, 3, 5, 0, -21, 2, -7, 0, -5, 5, -27, 0, -29, -4, 9, 0, 15, 3, -35, 0, 11, 6, -39, 0, -41, 9, 9, 0, -45, 3, -11, 0, 15, 11, -51, 0, 27, 10, 17, 0, -57, -3, -59, 0, 15, -5, 33, 0, -65, 15, 21
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Andrew Howroyd)
Crossrefs
Programs
-
Magma
[&+[d*MoebiusMu(d)*NumberOfDivisors(n div d):d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Nov 17 2019
-
Maple
with(numtheory): seq(add(d*mobius(d)*tau(n/d), d in divisors(n)), n=1..60); # Ridouane Oudra, Nov 17 2019
-
Mathematica
b[n_] := Sum[d MoebiusMu[d], {d, Divisors[n]}]; a[n_] := Sum[b[n/d], {d, Divisors[n]}]; a /@ Range[1, 100] (* Jean-François Alcover, Sep 20 2019, from PARI *) f[p_, e_] := 1-(p-1)*e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 23 2020 *)
-
PARI
\\ here b(n) is A023900 b(n)={sumdivmult(n, d, d*moebius(d))} a(n)={sumdiv(n, d, b(n/d))} \\ Andrew Howroyd, Aug 03 2018
Formula
a(n) = Sum_{d|n} A023900(n/d). - Andrew Howroyd, Aug 03 2018
a(n) = Sum_{d|n} d*mu(d)*tau(n/d). - Ridouane Oudra, Nov 17 2019
From Werner Schulte, Sep 06 2020: (Start)
Multiplicative with a(p^e) = 1 - (p-1) * e for prime p and e >= 0.
Dirichlet g.f.: (zeta(s))^2 / zeta(s-1).
Dirichlet inverse of A007431. (End)
a(n) = 1 - Sum_{k=1..n-1} a(gcd(n,k)). - Ilya Gutkovskiy, Nov 06 2020
Extensions
Name changed and terms a(11) and beyond from Andrew Howroyd, Aug 03 2018
Comments