A130102 E.g.f.: (e^x - x)^2.
1, 0, 2, 2, 8, 22, 52, 114, 240, 494, 1004, 2026, 4072, 8166, 16356, 32738, 65504, 131038, 262108, 524250, 1048536, 2097110, 4194260, 8388562, 16777168, 33554382, 67108812, 134217674, 268435400, 536870854, 1073741764, 2147483586
Offset: 0
Examples
a(4) = 8 because there are 8 sequences on {0,1} such that neither 0 nor 1 occurs exactly once: {0,0,0,0}, {0,0,1,1}, {0,1,0,1}, {0,1,1,0}, {1,0,0,1}, {1,0,1,0}, {1,1,0,0}, {1,1,1,1}. - _Geoffrey Critzer_, Dec 03 2011
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Programs
-
Magma
I:=[1, 0, 2, 2, 8, 22]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 28 2012
-
Mathematica
a=Exp[x]-x; Range[0,20]! CoefficientList[Series[a^2, {x,0,20}], x] (* Geoffrey Critzer, Dec 03 2011 *) CoefficientList[Series[1+2*x^2-2*x^3/((2*x-1)*(x-1)^2),{x,0,40}],x] (* Vincenzo Librandi, Jun 28 2012 *)
Formula
a(n) = 2^n - 2*n for n <> 2 (cf. A005803). - Rainer Rosenthal, Feb 14 2010.
E.g.f.: e^(2*x) - 2*x*e^x + x^2.
G.f. 1 + 2*x^2 - 2*x^3/((2*x - 1)*(x - 1)^2). - R. J. Mathar, Dec 04 2011
Comments