A130125 Triangle defined by A128174 * A130123, read by rows.
1, 0, 2, 1, 0, 4, 0, 2, 0, 8, 1, 0, 4, 0, 16, 0, 2, 0, 8, 0, 32, 1, 0, 4, 0, 16, 0, 64, 0, 2, 0, 8, 0, 32, 0, 128, 1, 0, 4, 0, 16, 0, 64, 0, 256, 0, 2, 0, 8, 0, 32, 0, 128, 0, 512, 1, 0, 4, 0, 16, 0, 64, 0, 256, 0, 1024, 0, 2, 0, 8, 0, 32, 0, 128, 0, 512, 0, 2048
Offset: 0
Examples
First few rows of the triangle are: 1; 0, 2; 1, 0, 4; 0, 2, 0, 8; 1, 0, 4, 0, 16; 0, 2, 0, 8, 0, 32; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
Flat(List([0..10], n-> List([0..n], k-> 2^(k-1)*(1+(-1)^(n-k)) ))); # G. C. Greubel, Jun 05 2019
-
Magma
[[2^(k-1)*(1+(-1)^(n-k)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jun 05 2019
-
Mathematica
Table[2^(k-1)*(1+(-1)^(n-k)), {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 05 2019 *)
-
PARI
{T(n,k) = 2^(k-1)*(1+(-1)^(n-k))}; \\ G. C. Greubel, Jun 05 2019
-
Sage
[[2^(k-1)*(1+(-1)^(n-k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jun 05 2019
Formula
T(n,k) = 2^(k-1)*(1 + (-1)^(n-k)). - G. C. Greubel, Jun 05 2019
Extensions
More terms added by G. C. Greubel, Jun 05 2019
Comments