A130127 Triangle defined by A000012 * A130125, read by rows.
1, 1, 2, 2, 2, 4, 2, 4, 4, 8, 3, 4, 8, 8, 16, 3, 6, 8, 16, 16, 32, 4, 6, 12, 16, 32, 32, 64, 4, 8, 12, 24, 32, 64, 64, 128, 5, 8, 16, 24, 48, 64, 128, 128, 256, 5, 10, 16, 32, 48, 96, 128, 256, 256, 512, 6, 10, 20, 32, 64, 96, 192, 256, 512, 512, 1024, 6, 12, 20, 40, 64, 128, 192, 384, 512, 1024, 1024, 2048
Offset: 1
Examples
First few rows of the triangle: 1; 1, 2; 2, 2, 4; 2, 4, 4, 8; 3, 4, 8, 8, 16; 3, 6, 8, 16, 16, 32; 4, 6, 12, 16, 32, 32, 64; ...
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
Magma
[[2^(k-1)*Floor((n-k+2)/2): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jun 06 2019
-
Mathematica
Table[2^(k-1)*Floor[(n-k+2)/2], {n,1,12}, {k,1,n}]//Flatten (* G. C. Greubel, Jun 06 2019 *)
-
PARI
{T(n,k) = 2^(k-1)*floor((n-k+2)/2)}; \\ G. C. Greubel, Jun 06 2019
-
Sage
[[2^(k-1)*floor((n-k+2)/2) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jun 06 2019
Formula
T(n,k) = 2^(k-1) * floor((n-k+2)/2). - G. C. Greubel, Jun 06 2019
Extensions
More terms added by G. C. Greubel, Jun 06 2019
Comments