A130223 Number of partitions of n-set in which number of blocks of size 2k-1 is odd (or zero) for every k.
1, 1, 1, 5, 8, 42, 117, 541, 2403, 10485, 65778, 282262, 2284493, 9977853, 97315935, 450358629, 4966934284, 25167390922, 298399576813, 1693380647429, 20784317362947, 134137856170593, 1658511579778364, 12262539123056548, 150144857708406161, 1273792249691584593
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Cf. A102759.
Programs
-
Maple
with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add( `if`(j=0 or irem(i, 2)=0 or irem(j, 2)=1, multinomial( n, n-i*j, i$j)/j!*b(n-i*j, i-1), 0), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..30); # Alois P. Heinz, Mar 08 2015
-
Mathematica
max = 26; f[x_] = Exp[Cosh[x]-1]*Product[1+Sinh[x^(2*k-1)/(2*k-1)!], {k, 0, max}]; CoefficientList[f[x] + O[x]^max, x]*Range[0, max-1]! (* Jean-François Alcover, Jul 01 2015 *)
Formula
E.g.f.: exp(cosh(x)-1)*Product_{k>0} (1+sinh(x^(2*k-1)/(2*k-1)!)).
Extensions
More terms from Max Alekseyev, Jan 31 2010