cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130223 Number of partitions of n-set in which number of blocks of size 2k-1 is odd (or zero) for every k.

Original entry on oeis.org

1, 1, 1, 5, 8, 42, 117, 541, 2403, 10485, 65778, 282262, 2284493, 9977853, 97315935, 450358629, 4966934284, 25167390922, 298399576813, 1693380647429, 20784317362947, 134137856170593, 1658511579778364, 12262539123056548, 150144857708406161, 1273792249691584593
Offset: 0

Views

Author

Vladeta Jovovic, Aug 05 2007, Aug 05 2007

Keywords

Crossrefs

Cf. A102759.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(j=0 or irem(i, 2)=0 or irem(j, 2)=1, multinomial(
           n, n-i*j, i$j)/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    max = 26; f[x_] = Exp[Cosh[x]-1]*Product[1+Sinh[x^(2*k-1)/(2*k-1)!], {k, 0, max}]; CoefficientList[f[x] + O[x]^max, x]*Range[0, max-1]! (* Jean-François Alcover, Jul 01 2015 *)

Formula

E.g.f.: exp(cosh(x)-1)*Product_{k>0} (1+sinh(x^(2*k-1)/(2*k-1)!)).

Extensions

More terms from Max Alekseyev, Jan 31 2010