cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130236 Partial sums of the 'upper' Fibonacci Inverse A130234.

Original entry on oeis.org

0, 1, 4, 8, 13, 18, 24, 30, 36, 43, 50, 57, 64, 71, 79, 87, 95, 103, 111, 119, 127, 135, 144, 153, 162, 171, 180, 189, 198, 207, 216, 225, 234, 243, 252, 262, 272, 282, 292, 302, 312, 322, 332, 342, 352, 362, 372, 382, 392, 402, 412, 422, 432, 442, 452, 462, 473
Offset: 0

Views

Author

Hieronymus Fischer, May 17 2007

Keywords

Crossrefs

Programs

  • Magma
    m:=120;
    f:= func< x | x*(&+[x^Fibonacci(j): j in [0..Floor(3*Log(3*m+1))]])/(1-x)^2 >;
    R:=PowerSeriesRing(Rationals(), m+1);
    [0] cat Coefficients(R!( f(x) )); // G. C. Greubel, Mar 18 2023
    
  • Mathematica
    b[n_]:= For[i=0, True, i++, If[Fibonacci[i] >= n, Return[i]]];
    b/@ Range[0, 56]//Accumulate (* Jean-François Alcover, Apr 13 2020 *)
  • SageMath
    m=120
    def f(x): return x*sum( x^fibonacci(j) for j in range(1+int(3*log(3*m+1))))/(1-x)^2
    def A130236_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( f(x) ).list()
    A130236_list(m) # G. C. Greubel, Mar 18 2023

Formula

a(n) = Sum_{k=0..n} A130234(k).
a(n) = n*A130234(n) - Fibonacci(A130234(n)+1) + 1.
G.f.: (x/(1-x)^2) * Sum_{k>=0} x^Fibonacci(k).