cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130238 Partial sums of A130237.

Original entry on oeis.org

0, 2, 8, 20, 36, 61, 91, 126, 174, 228, 288, 354, 426, 517, 615, 720, 832, 951, 1077, 1210, 1350, 1518, 1694, 1878, 2070, 2270, 2478, 2694, 2918, 3150, 3390, 3638, 3894, 4158, 4464, 4779, 5103, 5436, 5778, 6129, 6489, 6858, 7236, 7623, 8019, 8424, 8838
Offset: 0

Views

Author

Hieronymus Fischer, May 17 2007

Keywords

Crossrefs

Programs

  • Magma
    [(&+[j*Floor(Log(3/2 +j*Sqrt(5))/Log((1+Sqrt(5))/2)): j in [0..n]]): n in [0..70]]; // G. C. Greubel, Mar 18 2023
    
  • Mathematica
    a[n_]:= a[n]= Sum[j*Floor[Log[GoldenRatio, 3/2 +j*Sqrt[5]]], {j,0,n}];
    Table[a[n], {n,0,70}] (* G. C. Greubel, Mar 18 2023 *)
  • SageMath
    def A130238(n): return sum(j*int(log(3/2 +j*sqrt(5), golden_ratio)) for j in range(n+1))
    [A130238(n) for n in range(71)] # G. C. Greubel, Mar 18 2023

Formula

a(n) = Sum_{k=0..n} A130237(k).
a(n) = (n*(n+1)*A130233(n) - (Fib(A130233(n)) - 1)*(Fib(A130233(n) + 1) - 1))/2.
G.f.: (1/(1-x)^3)*Sum_{k>=1} (Fib(k)*(1-x) + x)*x^Fib(k).