cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130290 Number of nonzero quadratic residues modulo the n-th prime.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33, 35, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 98, 99, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, 135, 138, 140, 141, 146, 153, 155, 156, 158
Offset: 1

Views

Author

M. F. Hasler, May 21 2007

Keywords

Comments

Row lengths for formatting A063987 as a table: The number of nonzero quadratic residues modulo a prime p equals floor(p/2), or (p-1)/2 if p is odd. The number of squares including 0 is (p+1)/2, if p is odd (rows prime(i) of A096008 formatted as a table). In fields of characteristic 2, all elements are squares. For any m > 0, floor(m/2) is the number of even positive integers less than or equal to m, so a(n) also equals the number of even positive integers less than or equal to the n-th prime. For all n > 0, A130290(n+1) = A005097(n) = A102781(n+1) = A102781(n+1) = A130291(n+1)-1 = A111333(n+1)-1 = A006254(n)-1.
From Vladimir Shevelev, Jun 18 2016: (Start)
a(1)+2 and, for n >= 2, a(n)+1 is the smallest k such that there exists 0 < k_1 < k with the condition k_1^2 == k^2 (mod prime(n)).
Indeed, for n >= 2, if prime(n) = 4*t+1 then k = 2*t+1 = a(n)+1, since (2*t+1)^2 == (2*t)^2 (mod prime(n)) and there cannot be a smaller value of k; if prime(n) = 4*t-1, then k = 2*t = a(n)+1, since (2*t)^2 == (2*t-1)^2 (mod prime(n)). (End)
a(n) is the number of pairs (a,b) such that a + b = prime(n) with 1 <= a <= b. - Nicholas Leonard, Oct 02 2022

Examples

			a(1)=1 since the only nonzero element of Z/2Z equals its square.
a(3)=2 since 1=1^2=(-1)^2 and 4=2^2=(-2)^2 are the only nonzero squares in Z/5Z.
a(1000000) = 7742931 = (prime(1000000)-1)/2.
		

Crossrefs

Essentially the same as A005097.
Cf. A102781 (Number of even numbers less than the n-th prime), A063987 (quadratic residues modulo the n-th prime), A006254 (Numbers n such that 2n-1 is prime), A111333 (Number of odd numbers <= n-th prime), A000040 (prime numbers), A130291.
Appears in A217983. - Johannes W. Meijer, Oct 25 2012

Programs

Formula

a(n) = floor( A000040(n)/2 ) = #{ even positive integers <= A000040(n) }
a(n) = A055034(A000040(n)), n>=1. - Wolfdieter Lang, Sep 20 2012
a(n) = A005097(n-[n>1]) = A005097(max(n-1,1)). - M. F. Hasler, Dec 13 2019