A130294 Degree of the n X n Brauer loop scheme. Also, the sum of components of the Brauer loop model in size n.
1, 1, 1, 3, 7, 55, 307, 6153, 82977, 4196961, 137460201, 17446527483, 1392263902567, 441865841817751, 86102618147479627, 68171466271082093265, 32487634563234662295169, 64060941478203660710291329, 74749048993664905589266454929, 366627599282115135074804792982963
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- A. Knutson and P. Zinn-Justin, A scheme related to the Brauer loop model, Adv. in Math. 214 (2007), 40-77.
Crossrefs
Cf. A130306.
Programs
-
Mathematica
a[n_] := Which[n == 0, 1, n == 1, 1, EvenQ[n], Det[Table[Binomial[2i + 2j + 1, 2i], {i, 0, n/2 - 1}, {j, 0, n/2 - 1}]], True, Det[Table[Binomial[2i + 2j + 3, 2i + 1], {i, 0, (n-1)/2 - 1}, {j, 0, (n-1)/2 - 1}]]]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Dec 14 2018 *)
Formula
a(2n) = det(binomial(2i+2j+1,2i)), 0<=i,j<=n-1; a(2n+1) = det(binomial(2i+2j+3,2i+1)), 0<=i,j<=n-1.
Extensions
More terms from Alois P. Heinz, Dec 04 2018