A130312 Each Fibonacci number F(n) appears F(n) times.
1, 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34
Offset: 1
Examples
As triangle: 1; 1; 2, 2; 3, 3, 3; 5, 5, 5, 5, 5; 8, 8, 8, 8, 8, 8, 8, 8; 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13; ...
Programs
-
Maple
T:= n-> (f-> f$f)((<<0|1>, <1|1>>^n)[1,2]): seq(T(n), n=1..10); # Alois P. Heinz, Nov 23 2024
-
Mathematica
Flatten[Table[#,{#}]&/@Fibonacci[Range[10]]] (* Harvey P. Dale, Apr 18 2012 *)
-
PARI
a(n) = my(m=0); until(fibonacci(m)>n, m++); fibonacci(m-2); \\ Michel Marcus, Nov 26 2022
-
Python
from itertools import islice def A130312_gen(): # generator of terms a, b = 1, 1 while True: yield from (a,)*a a, b = b, a+b A130312_list = list(islice(A130312_gen(),20)) # Chai Wah Wu, Oct 13 2022
-
Python
def A130312(n): a, b = 0, 1 while (c:=a+b) <= n: a, b = b, c return a # Chai Wah Wu, Nov 23 2024
Formula
Extensions
More terms from Harvey P. Dale, Apr 18 2012
Comments