A204939
Least k such that n divides A130328(k-1), the k-th difference between numbers of the form 2^(k-1).
Original entry on oeis.org
1, 3, 2, 6, 7, 5, 4, 10, 16, 12, 46, 9, 67, 8, 7, 15, 29, 23, 154, 18, 16, 57, 56, 14, 191, 80, 154, 13, 379, 12, 11, 21, 46, 38, 67, 31, 631, 173, 67, 25, 191, 23, 92, 69, 67, 68, 254, 20, 211, 212
Offset: 1
A239126
Rectangular array showing the starting values M(n, k), k >= 1, for the Collatz operation (ud)^n, n >= 1, ending in an odd number, read by antidiagonals.
Original entry on oeis.org
3, 7, 7, 11, 15, 15, 15, 23, 31, 31, 19, 31, 47, 63, 63, 23, 39, 63, 95, 127, 127, 27, 47, 79, 127, 191, 255, 255, 31, 55, 95, 159, 255, 383, 511, 511, 35, 63, 111, 191, 319, 511, 767, 1023, 1023, 39, 71, 127, 223, 383, 639, 1023, 1535, 2047, 2047
Offset: 1
The rectangular array M(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 3 7 11 15 19 23 27 31 35 39
2: 7 15 23 31 39 47 55 63 71 79
3: 15 31 47 63 79 95 111 127 143 159
4: 31 63 95 127 159 191 223 255 287 319
5: 63 127 191 255 319 383 447 511 575 639
6: 127 255 383 511 639 767 895 1023 1151 1279
7: 255 511 767 1023 1279 1535 1791 2047 2303 2559
8: 511 1023 1535 2047 2559 3071 3583 4095 4607 5119
9: 1023 2047 3071 4095 5119 6143 7167 8191 9215 10239
10: 2047 4095 6143 8191 10239 12287 14335 16383 18431 20479
...
The triangle TM(m, n) begins (zeros are not shown):
m\n 1 2 3 4 5 6 7 8 9 10 ...
1: 3
2: 7 7
3: 11 15 15
4: 15 23 31 31
5: 19 31 47 63 63
6: 23 39 63 95 127 127
7: 27 47 79 127 191 255 255
8: 31 55 95 159 255 383 511 511
9: 35 63 111 191 319 511 767 1023 1023
10: 39 71 127 223 383 639 1023 1535 2047 2047
...
---------------------------------------------------------------------
n=1, ud, k=1: M(1, 1) = 3 = TM(1, 1), N(1,1) = 5 with the Collatz sequence [3, 10, 5] of length 3.
n=1, ud, k=2: M(1, 2) = 7 = TM(2, 1), N(1,2) = 11 with the Collatz sequence [7, 22, 11] of length 3.
n=4, (ud)^4, k=2: M(4, 2) = 63 = TM(5, 4), N(4,2) = 323 with the Collatz sequence [63, 190, 95, 286, 143, 430, 215, 646, 323] of length 9.
n=5, (ud)^5, k=1: M(5, 1) = 63 = TM(5, 5), N(5,1) = 485 with the Collatz sequence [63, 190, 95, 286, 143, 430, 215, 646, 323, 970, 485] of length 11.
- Wolfdieter Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Eric Weisstein's World of Mathematics, Collatz Problem.
- Wikipedia, Collatz Conjecture.
A204979
Least k such that n divides 2^(k-1)-2^(j-1) for some j satisfying 1<=j
Original entry on oeis.org
2, 3, 3, 4, 5, 4, 4, 5, 7, 6, 11, 5, 13, 5, 5, 6, 9, 8, 19, 7, 7, 12, 12, 6, 21, 14, 19, 6, 29, 6, 6, 7, 11, 10, 13, 9, 37, 20, 13, 8, 21, 8, 15, 13, 13, 13, 24, 7, 22, 22
Offset: 1
1 divides 2^2-2^1, so a(1)=2
2 divides 2^3-2^2, so a(2)=3
3 divides 2^3-2^1, so a(3)=3
4 divides 2^4-2^3, so a(4)=4
-
s[n_] := s[n] = 2^(n - 1); z1 = 800; z2 = 50;
Table[s[n], {n, 1, 30}] (* A000079 *)
u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
Table[u[m], {m, 1, z1}] (* A130328 *)
v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
Table[d[n], {n, 1, z2}] (* A204939 *)
k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
Table[k[n], {n, 1, z2}] (* A204979 *)
Table[j[n], {n, 1, z2}] (* A001511 ? *)
Table[s[k[n]], {n, 1, z2}] (* A204981 *)
Table[s[j[n]], {n, 1, z2}] (* A006519 ? *)
Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A204983 *)
Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204984 *)
A204985
Ordered differences of numbers 2^k for k>=1.
Original entry on oeis.org
2, 6, 4, 14, 12, 8, 30, 28, 24, 16, 62, 60, 56, 48, 32, 126, 124, 120, 112, 96, 64, 254, 252, 248, 240, 224, 192, 128, 510, 508, 504, 496, 480, 448, 384, 256, 1022, 1020, 1016, 1008, 992, 960, 896, 768, 512, 2046, 2044, 2040, 2032, 2016, 1984, 1920
Offset: 1
Original entry on oeis.org
1, 5, 2, 21, 10, 4, 85, 42, 20, 8, 341, 170, 84, 40, 16, 1365, 682, 340, 168, 80, 32, 5461, 2730, 1364, 680, 336, 160, 64, 21845, 10922, 5460, 2728, 1360, 672, 320, 128, 87381, 43690, 21844, 10920, 5456, 2720, 1344, 640, 256
Offset: 0
First few rows of the triangle:
1;
5, 2;
21, 10, 4;
85, 42, 20, 8;
341, 170, 84, 40, 16;
...
Showing 1-5 of 5 results.
Comments