A239127
Rectangular companion array to M(n,k), given in A239126, showing the end numbers N(n, k), k >= 1, for the Collatz operation (ud)^n, n >= 1, ending in an odd number, read by antidiagonals.
Original entry on oeis.org
5, 11, 17, 17, 35, 53, 23, 53, 107, 161, 29, 71, 161, 323, 485, 35, 89, 215, 485, 971, 1457, 41, 107, 269, 647, 1457, 2915, 4373, 47, 125, 323, 809, 1943, 4373, 8747, 13121, 53, 143, 377, 971, 2429, 5831, 13121, 26243, 39365, 59, 161, 431, 1133, 2915, 7289, 17495, 39365, 78731, 118097
Offset: 1
The rectangular array N(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 5 11 17 23 29 35 41 47 53 59
2: 17 35 53 71 89 107 125 143 161 179
3: 53 107 161 215 269 323 377 431 485 539
4: 161 323 485 647 809 971 1133 1295 1457 1619
5: 485 971 1457 1943 2429 2915 3401 3887 4373 4859
6: 1457 2915 4373 5831 7289 8747 10205 11663 13121 14579
7: 4373 8747 13121 17495 21869 26243 30617 34991 39365 43739
8: 13121 26243 39365 52487 65609 78731 91853 104975 118097 131219
9: 39365 78731 118097 157463 196829 236195 275561 314927 354293 393659
10: 118097 236195 354293 472391 590489 708587 826685 944783 1062881 1180979
...
-------------------------------------------------------------------------------
The triangle TN(m, n) begins (zeros are not shown):
m\n 1 2 3 4 5 6 7 8 9 10 ...
1: 5
2: 11 17
3: 17 35 53
4: 23 53 107 161
5: 29 71 161 323 485
6: 35 89 215 485 971 1457
7: 41 107 269 647 1457 2915 4373
8: 47 125 323 809 1943 4373 8747 13121
9: 53 143 377 971 2429 5831 13121 26243 39365
10: 59 161 431 1133 2915 7289 17495 39365 78731 118097
...
n=1, ud, k=1: M(1, 1) = 3 = TM(1, 1), N(1,1) = 5 with the Collatz sequence [3, 10, 5] of length 3.
n=1, ud, k=2: M(1, 2) = 7 = TM(2, 1), N(1,2) = 11 with the Collatz sequence [7, 22, 11] of length 3.
n=4, (ud)^4, k=2: M(4, 2) = 63 = TM(5, 4), N(4,2) = 323 with the Collatz sequence [63, 190, 95, 286, 143, 430, 215, 646, 323] of length 9.
n=5, (ud)^5, k=1: M(5, 1) = 63 = TM(5, 5), N(5,1) = 485 with the Collatz sequence [63, 190, 95, 286, 143, 430, 215, 646, 323, 970, 485] of length 11.
- Wolfdieter Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
A239128
a(n) = 32*n - 1, n >= 1. Fourth column of triangle A239126, related to the Collatz problem.
Original entry on oeis.org
31, 63, 95, 127, 159, 191, 223, 255, 287, 319, 351, 383, 415, 447, 479, 511, 543, 575, 607, 639, 671, 703, 735, 767, 799, 831, 863, 895, 927, 959, 991, 1023, 1055, 1087, 1119, 1151, 1183, 1215, 1247, 1279, 1311, 1343, 1375, 1407, 1439, 1471, 1503, 1535, 1567, 1599
Offset: 1
a(1) = 31 because the Collatz sequence following the pattern udududud is [31, 94, 47, 142, 71, 214, 107, 322, 161], with length 9, ending in the odd number N(4,1) = 161 = 162*1 - 1 from the array A239127, and 31 is the smallest positive number whose Collatz sequence follows this pattern and ends in an odd number.
a(4) = 127 with the Collatz sequence [127, 382, 191, 574, 287, 862, 431, 1294, 647] ending in N(4,4) = 647 = 32*4 - 1. 127 is the fourth smallest positive number following this pattern with odd end number.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Wolfdieter Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
A004767
a(n) = 4*n + 3.
Original entry on oeis.org
3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223
Offset: 0
G.f. = 3 + 7*x + 11*x^2 + 15*x^3 + 19*x^4 + 23*x^5 + 27*x^6 + 31*x^7 + ...
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 85.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999. See Theorem 8.1 on page 240.
- Ivan Panchenko, Table of n, a(n) for n = 0..200
- Guo-Niu Han, Enumeration of Standard Puzzles
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- Stere Ianus, Mihai Visinescu and Gabriel-Eduard Vilcu, Hidden symmetries and Killing tensors on curved spaces, arXiv:0811.3478 [math-ph], 2008. - _Jonathan Vos Post_, Nov 24 2008
- Tanya Khovanova, Recursive Sequences
- Juan F. Pulido, José L. Ramírez, and Andrés R. Vindas-Meléndez, Generating Trees and Fibonacci Polyominoes, arXiv:2411.17812 [math.CO], 2024. See p. 8.
- William A. Stein, Dimensions of the spaces S_k(Gamma_0(N))
- William A. Stein, The modular forms database
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Cf.
A004773,
A005408,
A008545 (partial products),
A008586,
A014105,
A016813,
A016825,
A017137,
A017629,
A022544,
A084849,
A181049,
A238476,
A239126.
-
a004767 = (+ 3) . (* 4)
a004767_list = [3, 7 ..] -- Reinhard Zumkeller, Oct 03 2012
-
[4*n+3: n in [0..50]]; // Wesley Ivan Hurt, Jul 09 2014
-
seq( 3+4*n, n=0..100 );
-
4 Range[50] - 1 (* Wesley Ivan Hurt, Jul 09 2014 *)
-
a(n)=4*n+3 \\ Charles R Greathouse IV, Jul 28 2015
-
Vec((3+x)/(1-x)^2 + O(x^200)) \\ Altug Alkan, Jan 15 2016
-
for n in range(0,50): print(4*n+3, end=', ') # Stefano Spezia, Dec 12 2018
-
[4*n+3 for n in range(50)] # G. C. Greubel, Dec 09 2018
-
(0 to 59).map(4 * + 3) // _Alonso del Arte, Dec 12 2018
A004771
a(n) = 8*n + 7. Or, numbers whose binary expansion ends in 111.
Original entry on oeis.org
7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 119, 127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239, 247, 255, 263, 271, 279, 287, 295, 303, 311, 319, 327, 335, 343, 351, 359, 367, 375, 383, 391, 399, 407, 415, 423, 431
Offset: 0
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 246.
-
List([0..60],n->8*n+7); # Muniru A Asiru, Aug 28 2018
-
a004771 = (+ 7) . (* 8)
a004771_list = [7, 15 ..] -- Reinhard Zumkeller, Jan 29 2013
-
[8*n+7: n in [0..60]]; // Vincenzo Librandi, May 28 2011
-
A004771:=n->8*n+7; seq(A004771(n), n=0..100); # Wesley Ivan Hurt, Dec 22 2013
-
8 Range[0, 60] + 7 (* or *) Range[7, 500, 8] (* or *) Table[8 n + 7, {n, 0, 60}] (* Bruno Berselli, Dec 28 2016 *)
-
a(n)=8*n+7 \\ Charles R Greathouse IV, Sep 23 2012
A125169
a(n) = 16*n + 15.
Original entry on oeis.org
15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 271, 287, 303, 319, 335, 351, 367, 383, 399, 415, 431, 447, 463, 479, 495, 511, 527, 543, 559, 575, 591, 607, 623, 639, 655, 671, 687, 703, 719, 735, 751, 767, 783, 799, 815, 831, 847
Offset: 0
-
I:=[15, 31]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..60]]; // Vincenzo Librandi, Jan 04 2012
-
Table[16n + 15, {n, 0, 100}]
LinearRecurrence[{2,-1},{15,31},100] (* or *) Range[15,1620,16] (* Harvey P. Dale, Jan 03 2012 *)
-
a(n) = 16*n + 15 \\ Vincenzo Librandi, Jan 04 2012
A239129
a(n) = 18*n - 1, n >= 1, the second column of triangle A239127 related to the Collatz problem.
Original entry on oeis.org
17, 35, 53, 71, 89, 107, 125, 143, 161, 179, 197, 215, 233, 251, 269, 287, 305, 323, 341, 359, 377, 395, 413, 431, 449, 467, 485, 503, 521, 539, 557, 575, 593, 611, 629, 647, 665, 683, 701, 719, 737, 755, 773, 791, 809, 827, 845, 863, 881, 899, 917, 935, 953, 971
Offset: 1
a(1) = 17 because the Collatz sequence for M(2,1) = 8*1 - 1 = 7 from A239126 is [7, 22, 11, 34, 17] ending in the odd number 17.
a(4) = 71 with the Collatz sequence of length 5 starting with M(2,4) = 31 given by [31, 94, 47, 142, 71], ending in a(4).
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Wolfdieter Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
-
CoefficientList[Series[(x + 17)/(1 - x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 16 2014 *)
A240222
Rectangular array giving all start values M(n, k), k >= 1, for Collatz sequences following the pattern (udd)^(n-1) ud, n >= 1, read by antidiagonals.
Original entry on oeis.org
1, 3, 1, 5, 9, 1, 7, 17, 33, 1, 9, 25, 65, 129, 1, 11, 33, 97, 257, 513, 1, 13, 41, 129, 385, 1025, 2049, 1, 15, 49, 161, 513, 1537, 4097, 8193, 1, 17, 57, 193, 641, 2049, 6145, 16385, 32769, 1, 19, 65, 225, 769, 2561, 8193, 24577, 65537, 131073, 1, 21, 73, 257, 897, 3073, 10241, 32769, 98305
Offset: 1
The rectangular array M(n, k) begins:
n\k 0 1 2 3 4 5 ...
1: 1 3 5 7 9 11
2: 1 9 17 25 33 41
3: 1 33 65 97 129 161
4: 1 129 257 385 513 641
5: 1 513 1025 1537 2049 2561
6: 1 2049 4097 6145 8193 10241
7: 1 8193 16385 24577 32769 40961
8: 1 32769 65537 98305 131073 163841
9: 1 131073 262145 393217 524289 655361
10: 1 524289 1048577 1572865 2097153 2621441
...
For more columns see the link.
The triangle TM(m, n) begins (zeros are not shown):
k\n 1 2 3 4 5 6 7 ...
0: 1
1: 3 1
2: 5 9 1
3: 7 17 33 1
4: 9 25 65 129 1
5: 11 33 97 257 513 1
6: 13 41 129 385 1025 2049 1
...
For more rows see the link.
n=1, ud, k=0: M(1, 0) = 1 = TM(0, 1), N(1, 0) = 2 with the Collatz sequence [1, 4, 2] of
length 3.
n=1, ud, k=2: M(1, 2) = 5 = TM(2, 1), N(1, 2) = 8 with the Collatz sequence [5, 16, 8] of length 3.
n=2, uddud, k=0: M(2, 0) = 1 = TM(1, 2), Ne(2, 0) = 2 with the Collatz sequence [1, 4, 2, 1, 4, 2, 1, 4, 2] of length 9.
- Wolfdieter Lang, Rectangular array and triangle.
- Wolfdieter Lang, On Collatz' Words, Sequences and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Eric Weisstein's World of Mathematics, Collatz Problem.
- Wikipedia, Collatz Conjecture
A240223
Rectangular companion array to M(n,k), given in A240222, showing the end numbers N(n, k), k >= 1, for the Collatz operation (udd)^(n-1) ud, n >= 1, read by antidiagonals.
Original entry on oeis.org
2, 5, 2, 8, 11, 2, 11, 20, 29, 2, 14, 29, 56, 83, 2, 17, 38, 83, 164, 245, 2, 20, 47, 110, 245, 488, 731, 2, 23, 56, 137, 326, 731, 1460, 2189, 2, 26, 65, 164, 407, 974, 2189, 4376, 6563, 2, 29, 74, 191, 488, 1217, 2918, 6563, 13124, 19685, 2, 32, 83, 218, 569, 1460, 3647, 8750, 19685, 39368, 59051, 2
Offset: 0
The rectangular array N(n, k) begins
n\k 0 1 2 3 4 5 ...
1: 2 5 8 11 14 17
2: 2 11 20 29 38 47
3: 2 29 56 83 110 137
4: 2 83 164 245 326 407
5: 2 245 488 731 974 1217
6: 2 731 1460 2189 2918 3647
7: 2 2189 4376 6563 8750 10937
8: 2 6563 13124 19685 26246 32807
9: 2 19685 39368 59051 78734 98417
10: 2 59051 118100 177149 236198 295247
...
For more columns see the link.
The triangle TN(m, n) begins (zeros are not shown):
m\n 1 2 3 4 5 6 7 ...
0: 2
1: 5 2
2: 8 11 2
3: 11 20 29 2
4: 14 29 56 83 2
5: 17 38 83 164 245 2
6: 20 47 110 245 488 731 2
...
For more rows see the link.
n=1, ud, k=0: M(1, 0) = 1, N(1, 0) = TN(0, 1) = 2 with the Collatz sequence [1, 4, 2] of length 3.
n=1, ud, k=2: M(1, 2) = 5, N(1, 2) = TN(2, 1) = 8 with the Collatz sequence [5, 16, 8] of length 3.
n=2, uddud, k=0: M(2, 0) = 1, Ne(2, 0) = TN(1, 2) = 2 with the Collatz sequence [1, 4, 2, 1, 4, 2, 1, 4, 2] of length 9.
- Wolfdieter Lang, Rectangular array and triangle.
- Wolfdieter Lang, On Collatz Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
A243115
Starting values of the reduced Collatz function (A014682) where 2 to the power of the "dropping time" is greater than the starting value.
Original entry on oeis.org
3, 7, 11, 15, 23, 27, 31, 39, 47, 59, 63, 71, 79, 91, 95, 103, 111, 123, 127, 155, 159, 167, 175, 191, 199, 207, 219, 223, 231, 239, 251, 255, 283, 287, 303, 319, 327, 347, 359, 367, 383, 411, 415, 423, 447, 463, 479, 487, 495, 507, 511, 539, 543, 559, 575
Offset: 1
3 is in this sequence because the dropping time starting with 3 is A126241(3) = 4 and 2^4 > 3.
-
is(t)= if(t<3||3!=t%4,0,my(x=t, d=0); until(x<=t, if(x%2, x=(x*3+1)/2, x/=2); d++); 2^d>t); \\ updated by Ruud H.G. van Tol, Jan 10 2023
Showing 1-9 of 9 results.
Comments