A239129
a(n) = 18*n - 1, n >= 1, the second column of triangle A239127 related to the Collatz problem.
Original entry on oeis.org
17, 35, 53, 71, 89, 107, 125, 143, 161, 179, 197, 215, 233, 251, 269, 287, 305, 323, 341, 359, 377, 395, 413, 431, 449, 467, 485, 503, 521, 539, 557, 575, 593, 611, 629, 647, 665, 683, 701, 719, 737, 755, 773, 791, 809, 827, 845, 863, 881, 899, 917, 935, 953, 971
Offset: 1
a(1) = 17 because the Collatz sequence for M(2,1) = 8*1 - 1 = 7 from A239126 is [7, 22, 11, 34, 17] ending in the odd number 17.
a(4) = 71 with the Collatz sequence of length 5 starting with M(2,4) = 31 given by [31, 94, 47, 142, 71], ending in a(4).
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Wolfdieter Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
-
CoefficientList[Series[(x + 17)/(1 - x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 16 2014 *)
A016969
a(n) = 6*n + 5.
Original entry on oeis.org
5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 191, 197, 203, 209, 215, 221, 227, 233, 239, 245, 251, 257, 263, 269, 275, 281, 287, 293, 299, 305, 311, 317, 323, 329, 335
Offset: 0
- Muniru A Asiru, Table of n, a(n) for n = 0..3000
- Mark W. Coffey, Bernoulli identities, zeta relations, determinant expressions, Mellin transforms, and representation of the Hurwitz numbers, arXiv:1601.01673 [math.NT], 2016.
- Tanya Khovanova, Recursive Sequences.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 949.
- D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals Math., Vol. 36, No. 3 (1935), pp. 637-649.
- Amelia Carolina Sparavigna, The Pentagonal Numbers and their Link to an Integer Sequence which contains the Primes of Form 6n-1, Politecnico di Torino (Italy, 2021).
- Amelia Carolina Sparavigna, Binary operations inspired by generalized entropies applied to figurate numbers, Politecnico di Torino (Italy, 2021).
- William A. Stein, Dimensions of the spaces S_k(Gamma_0(N)).
- William A. Stein, The modular forms database.
- Leo Tavares, Illustration: Twin Triangular Frames.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
-
List([0..60],n->6*n+5); # Muniru A Asiru, Nov 24 2018
-
[ 6*n+5: n in [0..55] ]; // Klaus Brockhaus, Jan 04 2009
-
6Range[0, 59] + 5 (* or *) NestList[6 + # &, 5, 60] (* Harvey P. Dale, Mar 09 2013 *)
-
a(n)=6*n+5 \\ Charles R Greathouse IV, Jul 10 2016
-
(1 to 60).map(6 * - 1).mkString(", ") // _Alonso del Arte, Nov 23 2018
A239126
Rectangular array showing the starting values M(n, k), k >= 1, for the Collatz operation (ud)^n, n >= 1, ending in an odd number, read by antidiagonals.
Original entry on oeis.org
3, 7, 7, 11, 15, 15, 15, 23, 31, 31, 19, 31, 47, 63, 63, 23, 39, 63, 95, 127, 127, 27, 47, 79, 127, 191, 255, 255, 31, 55, 95, 159, 255, 383, 511, 511, 35, 63, 111, 191, 319, 511, 767, 1023, 1023, 39, 71, 127, 223, 383, 639, 1023, 1535, 2047, 2047
Offset: 1
The rectangular array M(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 3 7 11 15 19 23 27 31 35 39
2: 7 15 23 31 39 47 55 63 71 79
3: 15 31 47 63 79 95 111 127 143 159
4: 31 63 95 127 159 191 223 255 287 319
5: 63 127 191 255 319 383 447 511 575 639
6: 127 255 383 511 639 767 895 1023 1151 1279
7: 255 511 767 1023 1279 1535 1791 2047 2303 2559
8: 511 1023 1535 2047 2559 3071 3583 4095 4607 5119
9: 1023 2047 3071 4095 5119 6143 7167 8191 9215 10239
10: 2047 4095 6143 8191 10239 12287 14335 16383 18431 20479
...
The triangle TM(m, n) begins (zeros are not shown):
m\n 1 2 3 4 5 6 7 8 9 10 ...
1: 3
2: 7 7
3: 11 15 15
4: 15 23 31 31
5: 19 31 47 63 63
6: 23 39 63 95 127 127
7: 27 47 79 127 191 255 255
8: 31 55 95 159 255 383 511 511
9: 35 63 111 191 319 511 767 1023 1023
10: 39 71 127 223 383 639 1023 1535 2047 2047
...
---------------------------------------------------------------------
n=1, ud, k=1: M(1, 1) = 3 = TM(1, 1), N(1,1) = 5 with the Collatz sequence [3, 10, 5] of length 3.
n=1, ud, k=2: M(1, 2) = 7 = TM(2, 1), N(1,2) = 11 with the Collatz sequence [7, 22, 11] of length 3.
n=4, (ud)^4, k=2: M(4, 2) = 63 = TM(5, 4), N(4,2) = 323 with the Collatz sequence [63, 190, 95, 286, 143, 430, 215, 646, 323] of length 9.
n=5, (ud)^5, k=1: M(5, 1) = 63 = TM(5, 5), N(5,1) = 485 with the Collatz sequence [63, 190, 95, 286, 143, 430, 215, 646, 323, 970, 485] of length 11.
- Wolfdieter Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Eric Weisstein's World of Mathematics, Collatz Problem.
- Wikipedia, Collatz Conjecture.
A239128
a(n) = 32*n - 1, n >= 1. Fourth column of triangle A239126, related to the Collatz problem.
Original entry on oeis.org
31, 63, 95, 127, 159, 191, 223, 255, 287, 319, 351, 383, 415, 447, 479, 511, 543, 575, 607, 639, 671, 703, 735, 767, 799, 831, 863, 895, 927, 959, 991, 1023, 1055, 1087, 1119, 1151, 1183, 1215, 1247, 1279, 1311, 1343, 1375, 1407, 1439, 1471, 1503, 1535, 1567, 1599
Offset: 1
a(1) = 31 because the Collatz sequence following the pattern udududud is [31, 94, 47, 142, 71, 214, 107, 322, 161], with length 9, ending in the odd number N(4,1) = 161 = 162*1 - 1 from the array A239127, and 31 is the smallest positive number whose Collatz sequence follows this pattern and ends in an odd number.
a(4) = 127 with the Collatz sequence [127, 382, 191, 574, 287, 862, 431, 1294, 647] ending in N(4,4) = 647 = 32*4 - 1. 127 is the fourth smallest positive number following this pattern with odd end number.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Wolfdieter Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
A240222
Rectangular array giving all start values M(n, k), k >= 1, for Collatz sequences following the pattern (udd)^(n-1) ud, n >= 1, read by antidiagonals.
Original entry on oeis.org
1, 3, 1, 5, 9, 1, 7, 17, 33, 1, 9, 25, 65, 129, 1, 11, 33, 97, 257, 513, 1, 13, 41, 129, 385, 1025, 2049, 1, 15, 49, 161, 513, 1537, 4097, 8193, 1, 17, 57, 193, 641, 2049, 6145, 16385, 32769, 1, 19, 65, 225, 769, 2561, 8193, 24577, 65537, 131073, 1, 21, 73, 257, 897, 3073, 10241, 32769, 98305
Offset: 1
The rectangular array M(n, k) begins:
n\k 0 1 2 3 4 5 ...
1: 1 3 5 7 9 11
2: 1 9 17 25 33 41
3: 1 33 65 97 129 161
4: 1 129 257 385 513 641
5: 1 513 1025 1537 2049 2561
6: 1 2049 4097 6145 8193 10241
7: 1 8193 16385 24577 32769 40961
8: 1 32769 65537 98305 131073 163841
9: 1 131073 262145 393217 524289 655361
10: 1 524289 1048577 1572865 2097153 2621441
...
For more columns see the link.
The triangle TM(m, n) begins (zeros are not shown):
k\n 1 2 3 4 5 6 7 ...
0: 1
1: 3 1
2: 5 9 1
3: 7 17 33 1
4: 9 25 65 129 1
5: 11 33 97 257 513 1
6: 13 41 129 385 1025 2049 1
...
For more rows see the link.
n=1, ud, k=0: M(1, 0) = 1 = TM(0, 1), N(1, 0) = 2 with the Collatz sequence [1, 4, 2] of
length 3.
n=1, ud, k=2: M(1, 2) = 5 = TM(2, 1), N(1, 2) = 8 with the Collatz sequence [5, 16, 8] of length 3.
n=2, uddud, k=0: M(2, 0) = 1 = TM(1, 2), Ne(2, 0) = 2 with the Collatz sequence [1, 4, 2, 1, 4, 2, 1, 4, 2] of length 9.
- Wolfdieter Lang, Rectangular array and triangle.
- Wolfdieter Lang, On Collatz' Words, Sequences and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Eric Weisstein's World of Mathematics, Collatz Problem.
- Wikipedia, Collatz Conjecture
A240223
Rectangular companion array to M(n,k), given in A240222, showing the end numbers N(n, k), k >= 1, for the Collatz operation (udd)^(n-1) ud, n >= 1, read by antidiagonals.
Original entry on oeis.org
2, 5, 2, 8, 11, 2, 11, 20, 29, 2, 14, 29, 56, 83, 2, 17, 38, 83, 164, 245, 2, 20, 47, 110, 245, 488, 731, 2, 23, 56, 137, 326, 731, 1460, 2189, 2, 26, 65, 164, 407, 974, 2189, 4376, 6563, 2, 29, 74, 191, 488, 1217, 2918, 6563, 13124, 19685, 2, 32, 83, 218, 569, 1460, 3647, 8750, 19685, 39368, 59051, 2
Offset: 0
The rectangular array N(n, k) begins
n\k 0 1 2 3 4 5 ...
1: 2 5 8 11 14 17
2: 2 11 20 29 38 47
3: 2 29 56 83 110 137
4: 2 83 164 245 326 407
5: 2 245 488 731 974 1217
6: 2 731 1460 2189 2918 3647
7: 2 2189 4376 6563 8750 10937
8: 2 6563 13124 19685 26246 32807
9: 2 19685 39368 59051 78734 98417
10: 2 59051 118100 177149 236198 295247
...
For more columns see the link.
The triangle TN(m, n) begins (zeros are not shown):
m\n 1 2 3 4 5 6 7 ...
0: 2
1: 5 2
2: 8 11 2
3: 11 20 29 2
4: 14 29 56 83 2
5: 17 38 83 164 245 2
6: 20 47 110 245 488 731 2
...
For more rows see the link.
n=1, ud, k=0: M(1, 0) = 1, N(1, 0) = TN(0, 1) = 2 with the Collatz sequence [1, 4, 2] of length 3.
n=1, ud, k=2: M(1, 2) = 5, N(1, 2) = TN(2, 1) = 8 with the Collatz sequence [5, 16, 8] of length 3.
n=2, uddud, k=0: M(2, 0) = 1, Ne(2, 0) = TN(1, 2) = 2 with the Collatz sequence [1, 4, 2, 1, 4, 2, 1, 4, 2] of length 9.
- Wolfdieter Lang, Rectangular array and triangle.
- Wolfdieter Lang, On Collatz Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
Showing 1-6 of 6 results.
Comments