A127576
Primes of the form 16n+15.
Original entry on oeis.org
31, 47, 79, 127, 191, 223, 239, 271, 367, 383, 431, 463, 479, 607, 719, 751, 863, 911, 991, 1039, 1087, 1103, 1151, 1231, 1279, 1327, 1423, 1439, 1471, 1487, 1567, 1583, 1663, 1759, 1823, 1871, 1951, 1999, 2063, 2111, 2143, 2207, 2239, 2287, 2351, 2383
Offset: 1
-
a = {}; Do[If[PrimeQ[16n + 15], AppendTo[a, 16n + 15]], {n, 1, 200}]; a
Select[16*Range[400]+15,PrimeQ] (* Harvey P. Dale, Feb 06 2013 *)
-
select(n->n%16==15, primes(100)) \\ Charles R Greathouse IV, Apr 28 2015
A127575
Numbers n such that 16n+15 is prime.
Original entry on oeis.org
1, 2, 4, 7, 11, 13, 14, 16, 22, 23, 26, 28, 29, 37, 44, 46, 53, 56, 61, 64, 67, 68, 71, 76, 79, 82, 88, 89, 91, 92, 97, 98, 103, 109, 113, 116, 121, 124, 128, 131, 133, 137, 139, 142, 146, 148, 149, 152, 158, 161, 166, 167, 169, 172, 179, 182, 188, 194, 197
Offset: 1
-
a = {}; Do[If[PrimeQ[16n + 15], AppendTo[a, n]], {n, 1, 200}]; a
-
is(n)=isprime(16*n+15) \\ Charles R Greathouse IV, Apr 29 2015
A239126
Rectangular array showing the starting values M(n, k), k >= 1, for the Collatz operation (ud)^n, n >= 1, ending in an odd number, read by antidiagonals.
Original entry on oeis.org
3, 7, 7, 11, 15, 15, 15, 23, 31, 31, 19, 31, 47, 63, 63, 23, 39, 63, 95, 127, 127, 27, 47, 79, 127, 191, 255, 255, 31, 55, 95, 159, 255, 383, 511, 511, 35, 63, 111, 191, 319, 511, 767, 1023, 1023, 39, 71, 127, 223, 383, 639, 1023, 1535, 2047, 2047
Offset: 1
The rectangular array M(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 3 7 11 15 19 23 27 31 35 39
2: 7 15 23 31 39 47 55 63 71 79
3: 15 31 47 63 79 95 111 127 143 159
4: 31 63 95 127 159 191 223 255 287 319
5: 63 127 191 255 319 383 447 511 575 639
6: 127 255 383 511 639 767 895 1023 1151 1279
7: 255 511 767 1023 1279 1535 1791 2047 2303 2559
8: 511 1023 1535 2047 2559 3071 3583 4095 4607 5119
9: 1023 2047 3071 4095 5119 6143 7167 8191 9215 10239
10: 2047 4095 6143 8191 10239 12287 14335 16383 18431 20479
...
The triangle TM(m, n) begins (zeros are not shown):
m\n 1 2 3 4 5 6 7 8 9 10 ...
1: 3
2: 7 7
3: 11 15 15
4: 15 23 31 31
5: 19 31 47 63 63
6: 23 39 63 95 127 127
7: 27 47 79 127 191 255 255
8: 31 55 95 159 255 383 511 511
9: 35 63 111 191 319 511 767 1023 1023
10: 39 71 127 223 383 639 1023 1535 2047 2047
...
---------------------------------------------------------------------
n=1, ud, k=1: M(1, 1) = 3 = TM(1, 1), N(1,1) = 5 with the Collatz sequence [3, 10, 5] of length 3.
n=1, ud, k=2: M(1, 2) = 7 = TM(2, 1), N(1,2) = 11 with the Collatz sequence [7, 22, 11] of length 3.
n=4, (ud)^4, k=2: M(4, 2) = 63 = TM(5, 4), N(4,2) = 323 with the Collatz sequence [63, 190, 95, 286, 143, 430, 215, 646, 323] of length 9.
n=5, (ud)^5, k=1: M(5, 1) = 63 = TM(5, 5), N(5,1) = 485 with the Collatz sequence [63, 190, 95, 286, 143, 430, 215, 646, 323, 970, 485] of length 11.
- Wolfdieter Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Eric Weisstein's World of Mathematics, Collatz Problem.
- Wikipedia, Collatz Conjecture.
A319282
Numbers of the form 16^i*(16*j + 15).
Original entry on oeis.org
15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 240, 255, 271, 287, 303, 319, 335, 351, 367, 383, 399, 415, 431, 447, 463, 479, 495, 496, 511, 527, 543, 559, 575, 591, 607, 623, 639, 655, 671, 687, 703, 719, 735, 751, 752, 767, 783, 799, 815
Offset: 1
Perfect powers over 2-adic integers:
Fourth powers: positive:
A319281; negative: this sequence (negated).
-
isA319282(n)= n\16^valuation(n, 16)%16==15
-
def A319282(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum((((x>>(i<<2))-15)>>4)+1 for i in range(x.bit_length()>>2))
return bisection(f,n,n) # Chai Wah Wu, Feb 17 2025
A158058
a(n) = 16*n^2 - 2*n.
Original entry on oeis.org
14, 60, 138, 248, 390, 564, 770, 1008, 1278, 1580, 1914, 2280, 2678, 3108, 3570, 4064, 4590, 5148, 5738, 6360, 7014, 7700, 8418, 9168, 9950, 10764, 11610, 12488, 13398, 14340, 15314, 16320, 17358, 18428, 19530, 20664, 21830, 23028, 24258, 25520
Offset: 1
-
[16*n^2-2*n: n in [1..40]]
-
seq(16*n^2-2*n,n=1..40); # Nathaniel Johnston, Jun 26 2011
-
LinearRecurrence[{3,-3,1},{14,60,138},40]
-
a(n) = 16*n^2-2*n.
A177065
a(n) = (8*n+3)*(8*n+5).
Original entry on oeis.org
15, 143, 399, 783, 1295, 1935, 2703, 3599, 4623, 5775, 7055, 8463, 9999, 11663, 13455, 15375, 17423, 19599, 21903, 24335, 26895, 29583, 32399, 35343, 38415, 41615, 44943, 48399, 51983, 55695, 59535, 63503, 67599, 71823, 76175, 80655, 85263, 89999, 94863, 99855
Offset: 0
-
[(8*n+3)*(8*n+5): n in [0..50]]; // Vincenzo Librandi, Apr 08 2013
-
A177065:=n->(8*n+3)*(8*n+5): seq(A177065(n), n=0..100); # Wesley Ivan Hurt, Apr 24 2017
-
Table[(8n+3)(8n+5),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{15,143,399},40] (* Harvey P. Dale, Mar 13 2013 *)
CoefficientList[Series[(15 + 98 x + 15 x^2)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 08 2013 *)
-
a(n)=(8*n+3)*(8*n+5) \\ Charles R Greathouse IV, Jun 17 2017
A214863
Numbers n such that n XOR 11 = n - 11.
Original entry on oeis.org
11, 15, 27, 31, 43, 47, 59, 63, 75, 79, 91, 95, 107, 111, 123, 127, 139, 143, 155, 159, 171, 175, 187, 191, 203, 207, 219, 223, 235, 239, 251, 255, 267, 271, 283, 287, 299, 303, 315, 319, 331, 335, 347, 351, 363
Offset: 1
Cf.
A005408 (m=1),
A042964 (m=2),
A131098 (m=3),
A047566 (m=4),
A047550 (m=5),
A047589 (m=6),
A004771 (m=7),
A115419 (m=8),
A214865 (m=9),
A214864 (m=10),
A133894 (m=12),
A125169 (m=15).
-
XOR := func;
m:=11;
for n in [1 .. 500] do
if (XOR(n, m) eq n-m) then n; end if;
end for;
-
Select[Range[400],BitXor[#,11]==#-11&] (* or *) LinearRecurrence[{1,1,-1},{11,15,27},50] (* Harvey P. Dale, Jun 05 2021 *)
A239128
a(n) = 32*n - 1, n >= 1. Fourth column of triangle A239126, related to the Collatz problem.
Original entry on oeis.org
31, 63, 95, 127, 159, 191, 223, 255, 287, 319, 351, 383, 415, 447, 479, 511, 543, 575, 607, 639, 671, 703, 735, 767, 799, 831, 863, 895, 927, 959, 991, 1023, 1055, 1087, 1119, 1151, 1183, 1215, 1247, 1279, 1311, 1343, 1375, 1407, 1439, 1471, 1503, 1535, 1567, 1599
Offset: 1
a(1) = 31 because the Collatz sequence following the pattern udududud is [31, 94, 47, 142, 71, 214, 107, 322, 161], with length 9, ending in the odd number N(4,1) = 161 = 162*1 - 1 from the array A239127, and 31 is the smallest positive number whose Collatz sequence follows this pattern and ends in an odd number.
a(4) = 127 with the Collatz sequence [127, 382, 191, 574, 287, 862, 431, 1294, 647] ending in N(4,4) = 647 = 32*4 - 1. 127 is the fourth smallest positive number following this pattern with odd end number.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Wolfdieter Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Showing 1-8 of 8 results.
Comments