A130330 Triangle read by rows, the matrix product A130321 * A000012, both taken as infinite lower triangular matrices.
1, 3, 1, 7, 3, 1, 15, 7, 3, 1, 31, 15, 7, 3, 1, 63, 31, 15, 7, 3, 1, 127, 63, 31, 15, 7, 3, 1, 255, 127, 63, 31, 15, 7, 3, 1, 511, 255, 127, 63, 31, 15, 7, 3, 1, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1
Offset: 0
Examples
First few rows of the triangle T(n, k): n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 ... 0: 1 1: 3 1 2: 7 3 1 3 15 7 3 1 4: 31 15 7 3 1 5: 63 31 15 7 3 1 6: 127 63 31 15 7 3 1 7: 255 127 63 31 15 7 3 1 8: 511 255 127 63 31 15 7 3 1 9: 1023 511 255 127 63 31 15 7 3 1 10: 2047 1023 511 255 127 63 31 15 7 3 1 11: 4095 2047 1023 511 255 127 63 31 15 7 3 1 12: 8191 4095 2047 1023 511 255 127 63 31 15 7 3 1 ... reformatted and extended. - _Wolfdieter Lang_, Oct 28 2019
References
- Johann Peter Hebel, Gesammelte Werke in sechs Bänden, Herausgeber: Jan Knopf, Franz Littmann und Hansgeorg Schmidt-Bergmann unter Mitarbeit von Ester Stern, Wallstein Verlag, 2019. Band 3, S. 36-37, Solution, S. 40-41. See also the link below.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..11324 [first 150 rows; offset shifted by _Georg Fischer_, Oct 29 2019]
- Johann Peter Hebel, Zweites Rechnungsexempel., 1804; Solution: Auflösung des zweiten Rechnungsexempels. , 1805.
Programs
-
Haskell
a130330 n k = a130330_row n !! (k-1) a130330_row n = a130330_tabl !! (n-1) a130330_tabl = iterate (\xs -> (2 * head xs + 1) : xs) [1] -- Reinhard Zumkeller, Mar 31 2012
-
Mathematica
nn=12;a=1/(1- x);b=1/(1-2x);Map[Select[#,#>0&]&,Drop[CoefficientList[Series[a x^2 b/(1-y x),{x,0,nn}],{x,y}],2]]//Grid (* Geoffrey Critzer, Dec 31 2013 *)
Formula
A130321 * A000012 as infinite lower triangular matrices, where A130321 = (1; 2,1; 4,2,1; ...) and A000012 = (1; 1,1; 1,1,1; ...).
In every column k with offset n = k: 2^(m+1) - 1 = A000225(m+1) = (1, 3, 7, 15, ...), for m >= 0.
G.f.: 1/((1-y*x)*(1-x)*(1-2x)). - Geoffrey Critzer, Dec 31 2013
T(n, k) = 2^((n - k) + 1) - 1, n >= 0, k = 0..n. - Wolfdieter Lang, Oct 28 2019
Extensions
More terms from Geoffrey Critzer, Dec 31 2013
Edited by Wolfdieter Lang, Oct 28 2019
Comments