cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130423 Main diagonal of array A[k,n] = n-th sum of 3 consecutive k-gonal numbers, k>2.

Original entry on oeis.org

4, 14, 39, 88, 170, 294, 469, 704, 1008, 1390, 1859, 2424, 3094, 3878, 4785, 5824, 7004, 8334, 9823, 11480, 13314, 15334, 17549, 19968, 22600, 25454, 28539, 31864, 35438, 39270, 43369, 47744, 52404, 57358, 62615, 68184, 74074, 80294, 86853
Offset: 1

Views

Author

Jonathan Vos Post, May 26 2007

Keywords

Comments

The first row of the array is the sum of 3 consecutive triangular numbers = A000217(n) + A000217(n+1) + A000217(n+2) = Centered triangular numbers: 3*n*(n-1)/2 + 1, for n>1. The second row of the array is the sum of 3 consecutive squares = Number of points on surface of square pyramid: 3*n^2 + 2 (n>1). The first column of the array is k+1 = 4, 5, 6, 7, 8, 9, ... The second column of the array is A016825 = 4*n + 2 (for n>2). The third column of the array is A017377 = 10*n + 9 (for n>0).

Examples

			The array begins:
k / A[k,n]
3.|.4.10.19.31..46..64..85.109.136.166....=A005448(n+1).
4.|.5.14.29..50..77.110.149.194.245.302...=A005918(n).
5.|.6.18.39..69.108.156.213.279.354.438...=A129863(n).
6.|.7.22.49..88.139.202.277.364.463.574...
7.|.8.26.59.107.170.248.341.449.572.710...
8.|.9.30.69.126.201.294.405.534.681.846...
		

Crossrefs

Programs

  • Magma
    I:=[4, 14, 39, 88]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 28 2012
  • Maple
    P := proc(k,n) n*((k-2)*n-k+4)/2 ; end: A := proc(k,n) add( P(k,i),i=n..n+2) ; end: A130423 := proc(n) A(n+3,n) ; end: seq(A130423(n),n=0..40) ; # R. J. Mathar, Jun 14 2007
  • Mathematica
    CoefficientList[Series[(4-2*x+7*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 28 2012 *)
    Table[n (3n^2-3n+8)/2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{4,14,39,88},40] (* Harvey P. Dale, Aug 15 2012 *)

Formula

a(n) = A[n+2,n] = P(k+2,n) + P(k+2,n+1) + P(k+2,n+2) where P(k,n) = k*((n-2)*k - (n-4))/2.
a(n) = n*(3*n^2-3*n+8)/2. G.f.: x*(4-2*x+7*x^2)/(1-x)^4. [Colin Barker, Apr 30 2012]
a(1)=4, a(2)=14, a(3)=39, a(4)=88, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Aug 15 2012

Extensions

More terms from R. J. Mathar, Jun 14 2007