A130484 a(n) = Sum_{k=0..n} (k mod 6) (Partial sums of A010875).
0, 1, 3, 6, 10, 15, 15, 16, 18, 21, 25, 30, 30, 31, 33, 36, 40, 45, 45, 46, 48, 51, 55, 60, 60, 61, 63, 66, 70, 75, 75, 76, 78, 81, 85, 90, 90, 91, 93, 96, 100, 105, 105, 106, 108, 111, 115, 120, 120, 121, 123, 126, 130, 135, 135, 136, 138, 141, 145, 150, 150, 151, 153
Offset: 0
Links
- Shawn A. Broyles, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
Programs
-
GAP
a:=[0,1,3,6,10,15,15];; for n in [8..71] do a[n]:=a[n-1]+a[n-6]-a[n-7]; od; a; # G. C. Greubel, Aug 31 2019
-
Magma
I:=[0,1,3,6,10,15,15]; [n le 7 select I[n] else Self(n-1) + Self(n-6) - Self(n-7): n in [1..71]]; // G. C. Greubel, Aug 31 2019
-
Maple
seq(coeff(series(x*(1-6*x^5+5*x^6)/((1-x^6)*(1-x)^3), x, n+1), x, n), n = 0 .. 70); # G. C. Greubel, Aug 31 2019
-
Mathematica
Accumulate[Mod[Range[0,70],6]] (* or *) Accumulate[PadRight[ {},70, Range[0,5]]] (* Harvey P. Dale, Jul 12 2016 *)
-
PARI
a(n) = sum(k=0, n, k % 6); \\ Michel Marcus, Apr 28 2018
-
PARI
a(n)=n\6*15 + binomial(n%6+1,2) \\ Charles R Greathouse IV, Jan 24 2022
-
Sage
def A130484_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(x*(1-6*x^5+5*x^6)/((1-x^6)*(1-x)^3)).list() A130484_list(70) # G. C. Greubel, Aug 31 2019
Comments