A130485 a(n) = Sum_{k=0..n} (k mod 7) (Partial sums of A010876).
0, 1, 3, 6, 10, 15, 21, 21, 22, 24, 27, 31, 36, 42, 42, 43, 45, 48, 52, 57, 63, 63, 64, 66, 69, 73, 78, 84, 84, 85, 87, 90, 94, 99, 105, 105, 106, 108, 111, 115, 120, 126, 126, 127, 129, 132, 136, 141, 147, 147, 148, 150, 153, 157, 162, 168, 168, 169, 171, 174, 178, 183
Offset: 0
Links
- Shawn A. Broyles, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
Programs
-
GAP
a:=[0,1,3,6,10,15,21,21];; for n in [9..71] do a[n]:=a[n-1]+a[n-7]-a[n-8]; od; a; # G. C. Greubel, Aug 31 2019
-
Magma
I:=[0,1,3,6,10,15,21,21]; [n le 8 select I[n] else Self(n-1) + Self(n-7) - Self(n-8): n in [1..71]]; // G. C. Greubel, Aug 31 2019
-
Maple
a:=n->add(chrem( [n,j], [1,7] ),j=1..n):seq(a(n), n=1..70); # Zerinvary Lajos, Apr 07 2009
-
Mathematica
LinearRecurrence[{1,0,0,0,0,0,1,-1},{0,1,3,6,10,15,21,21},70] (* Harvey P. Dale, Jul 30 2017 *)
-
PARI
concat(0,Vec((1-7*x^6+6*x^7)/(1-x^7)/(1-x)^3+O(x^70))) \\ Charles R Greathouse IV, Dec 22 2011
-
Sage
def A130485_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(x*(1-7*x^6+6*x^7)/((1-x^7)*(1-x)^3)).list() A130485_list(70) # G. C. Greubel, Aug 31 2019
Comments