A130490 a(n) = Sum_{k=0..n} (k mod 12) (Partial sums of A010881).
0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 66, 67, 69, 72, 76, 81, 87, 94, 102, 111, 121, 132, 132, 133, 135, 138, 142, 147, 153, 160, 168, 177, 187, 198, 198, 199, 201, 204, 208, 213, 219, 226, 234, 243, 253, 264, 264, 265, 267, 270, 274, 279, 285, 292, 300
Offset: 0
Keywords
Links
- Shawn A. Broyles, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
GAP
List([0..60], n-> Sum([0..n], k-> k mod 12 )); # G. C. Greubel, Sep 01 2019
-
Magma
[&+[(k mod 12): k in [0..n]]: n in [0..60]]; // G. C. Greubel, Sep 01 2019
-
Maple
seq(coeff(series(x*(1-12*x^11+11*x^12)/((1-x^12)*(1-x)^3), x, n+1), x, n), n = 0..60); # G. C. Greubel, Sep 01 2019
-
Mathematica
Sum[Mod[k, 12], {k, 0, Range[0, 60]}] (* G. C. Greubel, Sep 01 2019 *) LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,1,-1},{0,1,3,6,10,15,21,28,36,45,55,66,66},60] (* Harvey P. Dale, Jan 16 2024 *)
-
PARI
a(n) = sum(k=0, n, k % 12); \\ Michel Marcus, Apr 29 2018
-
Sage
[sum(k%12 for k in (0..n)) for n in (0..60)] # G. C. Greubel, Sep 01 2019
Comments