A130568 Generalized Beatty sequence 1+2*floor(n*phi), which contains infinitely many primes.
1, 3, 7, 9, 13, 17, 19, 23, 25, 29, 33, 35, 39, 43, 45, 49, 51, 55, 59, 61, 65, 67, 71, 75, 77, 81, 85, 87, 91, 93, 97, 101, 103, 107, 111, 113, 117, 119, 123, 127, 129, 133, 135, 139, 143, 145, 149, 153, 155, 159, 161, 165, 169, 171, 175, 177, 181, 185, 187, 191, 195
Offset: 0
Examples
a(0) = 1 + 2*floor(0*phi) = 1 + 2*0 = 1. a(1) = 1 + 2*floor(1*phi) = 1 + 2*floor(1.6180) = 1 + 2*1 = 3. a(2) = 1 + 2*floor(2*phi) = 1 + 2*floor(3.2360) = 1 + 2*3 = 7. a(3) = 1 + 2*floor(3*phi) = 1 + 2*floor(4.8541) = 1 + 2*4 = 9. a(4) = 1 + 2*floor(4*phi) = 1 + 2*floor(6.4721) = 1 + 2*6 = 13. a(5) = 1 + 2*floor(5*phi) = 1 + 2*floor(8.0901) = 1 + 2*8 = 17. a(6) = 1 + 2*floor(6*phi) = 1 + 2*floor(9.7082) = 1 + 2*9 = 19. a(7) = 1 + 2*floor(7*phi) = 1 + 2*floor(11.3262) = 1 + 2*11 = 23. a(8) = 1 + 2*floor(8*phi) = 1 + 2*floor(12.9442) = 1 + 2*12 = 25. a(9) = 1 + 2*floor(9*phi) = 1 + 2*floor(14.5623) = 1 + 2*14 = 29. a(10) = 1 + 2*floor(10*phi) = 1 + 2*floor(16.1803) = 1 + 2*16 = 33.
Links
- William D. Banks and Igor E. Shparlinski, Prime numbers with Beatty sequences, arXiv:0708.1015 [math.NT], 7 Aug 2007.
Crossrefs
Cf. A001622.
Programs
-
Magma
[1+2*Floor(n*((1+Sqrt(5))/2)): n in [0..60]]; // Vincenzo Librandi, Sep 17 2015
-
Mathematica
Table[1 + 2*Floor[n*(Sqrt[5] + 1)/2], {n, 0, 80}] (* Stefan Steinerberger, Aug 10 2007 *)
-
Python
from math import isqrt def A130568(n): return (n+isqrt(5*n**2)&-2)|1 # Chai Wah Wu, May 22 2025
Formula
a(n) = 1+2*floor(n*phi), where phi = (1 + sqrt(5))/2.
Extensions
More terms from Stefan Steinerberger, Aug 10 2007
Comments