cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A130625 First differences of A130624.

Original entry on oeis.org

1, 4, 7, 11, 20, 41, 85, 172, 343, 683, 1364, 2729, 5461, 10924, 21847, 43691, 87380, 174761, 349525, 699052, 1398103, 2796203, 5592404, 11184809, 22369621, 44739244, 89478487, 178956971, 357913940, 715827881, 1431655765, 2863311532
Offset: 0

Views

Author

Paul Curtz, Jun 18 2007

Keywords

Comments

a(n) = A130624(n+1) - A130624(n).

Crossrefs

Cf. A130624, A130626 (second differences).

Programs

  • Magma
    m:=33; S:=[ [0, 1, 3][ (n-1) mod 3 +1 ]: n in [1..m] ]; T:=[ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; [ T[n+1]-T[n]: n in[1..m-1] ]; /* Klaus Brockhaus, Jun 21 2007 */
  • Mathematica
    LinearRecurrence[{3,-3,2},{1,4,7},40] (* Harvey P. Dale, Apr 27 2015 *)

Formula

G.f.: (1-x)*(1+2*x)/((1-2*x)*(1-x+x^2)).
a(n) = 3a(n-1) - 3a(n-2) + 2a(n-3). Sequence is identical to its third differences. Binomial transform of 1, 3, 0. - Paul Curtz, Nov 23 2007

Extensions

Edited and extended by Klaus Brockhaus, Jun 21 2007

A130626 Second differences of A130624.

Original entry on oeis.org

3, 3, 4, 9, 21, 44, 87, 171, 340, 681, 1365, 2732, 5463, 10923, 21844, 43689, 87381, 174764, 349527, 699051, 1398100, 2796201, 5592405, 11184812, 22369623, 44739243, 89478484, 178956969, 357913941, 715827884, 1431655767, 2863311531
Offset: 0

Views

Author

Paul Curtz, Jun 18 2007

Keywords

Comments

First differences of A130625: a(n) = A130625(n+1) - A130625(n).

Crossrefs

Programs

  • Magma
    m:=34; S:=[ [0, 1, 3][ (n-1) mod 3 +1 ]: n in [1..m] ]; T:=[ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; U:=[ T[n+1]-T[n]: n in[1..m-1] ]; [ U[n+1]-U[n]: n in[1..m-2] ]; /* Klaus Brockhaus, Jun 21 2007 */
  • Mathematica
    Differences[LinearRecurrence[{3,-3,2},{0,1,5},40],2] (* or *) LinearRecurrence[{3,-3,2},{3,3,4},40] (* Harvey P. Dale, Aug 05 2024 *)

Formula

G.f.: (3-6*x+4*x^2)/((1-2*x)*(1-x+x^2)).
a(n) = 3a(n-1) - 3a(n-2) + 2a(n-3). - Paul Curtz, Apr 24 2008

Extensions

Edited and extended by Klaus Brockhaus, Jun 21 2007
Showing 1-2 of 2 results.