A130628 Related to the minimal number of periodic orbits of periods guaranteed by Sharkovskii's theorem.
1, 1, 0, 1, 0, 2, 0, 3, 0, 6, 1, 9, 2, 18, 4, 30, 8, 56, 16, 99, 32, 186, 64, 337, 128, 635, 256, 1177, 512, 2220, 1024, 4176, 2048, 7930, 4098, 15044, 8200, 28738, 16410, 54937, 32848, 105474, 65760, 202845, 131668, 391316, 263680, 756223, 528128
Offset: 1
Keywords
Links
- Bau-Sen Du, The Minimal Number of Periodic Orbits of Periods Guaranteed in Sharkovskii's Theorem, arXiv:0706.2297 [math.DS], 2007; Bull. Austral. Math. Soc. 31(1985), 89-103. Corrigendum: 32 (1985), 159.
Crossrefs
Programs
-
Mathematica
max = 50; Clear[b1, b2]; For[n = 1, n <= max, n++, For[j = 1, j <= n, j++, b1[1][j, n] = 0; b1[2][j, n] = 1; b2[1][j, n] = b2[2][j, n] = 0]; b2[1][n, n] = b2[2][n, n] = 1]; For[k = 3, k <= max, k++, For[n = 1, n <= max, n++, For[j = 1, j <= n-1, j++, b1[k][j, n] = b1[k-2][1, n] + b1[k-2][j+1, n]; b2[k][j, n] = b2[k-2][1, n] + b2[k-2][j+1, n]]; b1[k][n, n] = b1[k-2][1, n] + b1[k-1][n, n]; b2[k][n, n] = b2[k-2][1, n] + b2[k-1][n, n]]]; phin[n_] := Table[b2[m][n, n] + 2 Sum[If[m + 2 - 2j > 0, b1[m + 2 - 2j][j, n], 0], {j, 1, n}], {m, 1, max}]; MT[s_List] := Table[DivisorSum[n, MoebiusMu[#] s[[n/#]] &]/n, {n, 1, Length[s]}]; MT[phin[5]] (* Jean-François Alcover, Nov 06 2018, adapted from Max Alekseyev's PARI script *)
-
PARI
\\ implementation of MT() and phin() is given in A006207 MT(phin(5)) \\ sequence A_{n,5} \\ Max Alekseyev
Extensions
Terms a(32) onward from Max Alekseyev, Feb 23 2012
Comments