A130695 Number of ways to write n as (a+1)(b+1)(c+1) - abc with a, b, c nonnegative integers.
1, 3, 3, 6, 3, 9, 4, 9, 6, 12, 3, 15, 6, 12, 9, 15, 3, 21, 7, 15, 9, 18, 6, 24, 9, 15, 9, 24, 6, 30, 6, 15, 15, 24, 9, 30, 7, 21, 12, 30, 3, 33, 15, 21, 15, 24, 6, 39, 12, 27, 12, 27, 9, 42, 12, 21, 15, 36, 6, 45, 13, 18, 21, 36, 12, 39, 6, 33, 15, 45, 9, 42, 12, 24, 24, 30, 9, 57, 18, 30
Offset: 1
Keywords
Examples
a(7) = 4 because 7 = 7*1*1-6*0*0 = 1*7*1-0*6*0 = 1*1*7-0*0*6 = 2*2*2-1*1*1. G.f. = x + 3*x^2 + 3*x^3 + 6*x^4 + 3*x^5 + 9*x^6 + 4*x^7 + 9*x^8 + 6*x^9 + ...
Links
- _Jan Kristian Haugland_, Jul 10 2007, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A238872.
Programs
-
Mathematica
f[{a_,b_,c_}]:=(a+1)(b+1)(c+1)-a*b*c; nn=80;Take[Transpose[Sort[Tally[f/@ Tuples[Range[0,nn],3]],#1[[1]]<#2[[1]]&]] [[2]],nn] (* Harvey P. Dale, Mar 05 2012 *) a[ n_] := Length @ FindInstance[ {x >= 0, y >= 0, z >= 0, x y + y z + z x + x + y + z + 1 == n}, {x, y, z}, Integers, 10^9]; (* Michael Somos, Jul 04 2015 *) a[ n_] := (2 + (-1)^n) Length @ FindInstance[ {1 <= y <= n, 1 <= x <= y, 1 <= z <= y, y^2 - (x^2 - x + z^2 - z) / 2 == n}, {x, y, z}, Integers, 10^9]; (* Michael Somos, Jul 04 2015 *)