cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130713 a(0)=a(2)=1, a(1)=2, a(n)=0 for n > 2.

Original entry on oeis.org

1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul Curtz and Tanya Khovanova, Jul 01 2007

Keywords

Comments

Self-convolution of A019590. Up to a sign the convolutional inverse of the natural numbers sequence. - Tanya Khovanova, Jul 14 2007
Iterated partial sums give the chain A130713 -> A113311 -> A008574 -> A001844 -> A005900 -> A006325 -> A033455 -> A259181, up to index. The k-th term of the n-th partial sums is (n^2-7n+14 + 4k(k+n-4))(k+n-4)!/(k-1)!/(n-1)!, for k > 3-n. Iterating partial sums in reverse (n-th differences with n zeros prepended) gives row (n+3) of A182533, modulo signs and trailing zeros. - Travis Scott, Feb 19 2023

Programs

Formula

G.f.: 1 + 2*x + x^2.
a(n) = binomial(2n, n^2). - Wesley Ivan Hurt, Mar 08 2014