A130713 a(0)=a(2)=1, a(1)=2, a(n)=0 for n > 2.
1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Links
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
Programs
-
Maple
A130713:=n->binomial(2*n, n^2); seq(A130713(n), n=0..100); # Wesley Ivan Hurt, Mar 08 2014
-
Mathematica
Table[Binomial[2 n, n^2], {n, 0, 100}] (* Wesley Ivan Hurt, Mar 08 2014 *)
Formula
G.f.: 1 + 2*x + x^2.
a(n) = binomial(2n, n^2). - Wesley Ivan Hurt, Mar 08 2014
Comments