A167194 Triangle read by rows. A130713 in the columns.
1, 2, 1, 1, 2, 1, 0, 1, 2, 1, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1
Offset: 1
Examples
Table begins: 1; 2,1; 1,2,1; 0,1,2,1; 0,0,1,2,1; 0,0,0,1,2,1; 0,0,0,0,1,2,1; 0,0,0,0,0,1,2,1; 0,0,0,0,0,0,1,2,1; 0,0,0,0,0,0,0,1,2,1; 0,0,0,0,0,0,0,0,1,2,1; ...
Programs
-
Mathematica
Array[PadLeft[{1, 2, 1}, #] &,15] (* Paolo Xausa, Jun 27 2024 *)
Formula
From Peter Bala, Sep 12 2012: (Start)
T(n,k) = binomial(2,n-k).
O.g.f.: (1+x)^2/(1-t*x).
Riordan array ((1+x)^2,x).
Matrix inverse is signed version of A004736. (End)
Comments