cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130724 a(n) = lcm(n,3) / gcd(n,3).

Original entry on oeis.org

0, 3, 6, 1, 12, 15, 2, 21, 24, 3, 30, 33, 4, 39, 42, 5, 48, 51, 6, 57, 60, 7, 66, 69, 8, 75, 78, 9, 84, 87, 10, 93, 96, 11, 102, 105, 12, 111, 114, 13, 120, 123, 14, 129, 132, 15, 138, 141, 16, 147, 150, 17, 156, 159, 18, 165, 168, 19, 174, 177, 20, 183, 186
Offset: 0

Views

Author

W. Neville Holmes, Jul 04 2007

Keywords

Examples

			a(7) = 21 because lcm(3,7) = 21, gcd(3,7) = 1 and 21/1 = 21.
		

Crossrefs

Programs

Formula

a(n) = A109044(n) / A109007(n).
From Wesley Ivan Hurt, Jul 24 2016: (Start)
G.f.: x*(3 + 6*x + x^2 + 6*x^3 + 3*x^4)/(x^3 - 1)^2.
a(n) = 2*a(n-3) - a(n-6) for n>5.
a(n) = 27*n/(5 + 4*cos(2*n*Pi/3))^2.
If n mod 3 = 0, then n/3, else 3*n.
a(n) = lcm(numerator(n/3), denominator(n/3)). (End)
Sum_{k=1..n} a(k) ~ (19/18)*n^2. - Amiram Eldar, Oct 07 2023

Extensions

Corrected and extended by Harvey P. Dale, May 16 2013