cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130780 Number of partitions of n such that number of odd parts is greater than or equal to number of even parts.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 8, 12, 16, 23, 32, 42, 58, 75, 102, 131, 173, 220, 288, 363, 466, 587, 743, 929, 1164, 1448, 1797, 2224, 2738, 3368, 4122, 5042, 6133, 7466, 9035, 10941, 13184, 15888, 19064, 22876, 27343
Offset: 0

Views

Author

Vladeta Jovovic, Aug 19 2007

Keywords

Comments

a(n) = A108950(n) + A045931(n) = A000041(n) - A108949(n). - Reinhard Zumkeller, Jan 21 2010
a(n) = Sum_{k=0..n} A240009(n,k). - Alois P. Heinz, Mar 30 2014

Examples

			a(5)=6 because we have 5,41,32,311,211 and 11111 (221 does not qualify).
		

Crossrefs

Programs

  • Maple
    g:=sum(x^k/(product((1-x^(2*i))^2,i=1..k)),k=0..50): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=1..40); # Emeric Deutsch, Aug 24 2007
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t>=0, 1, 0), `if`(i<1, 0, b(n, i-1, t)+
          `if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1)))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..80);  # Alois P. Heinz, Mar 30 2014
  • Mathematica
    $RecursionLimit = 1000; b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t >= 0, 1, 0],  If[i<1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t + (2*Mod[i, 2]-1)]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, May 12 2015, after Alois P. Heinz *)
    opgQ[n_]:=Module[{len=Length[n],op},op=Length[Select[n,OddQ]];op>= len-op]; Table[Count[IntegerPartitions[n],?(opgQ)],{n,0,50}] (* _Harvey P. Dale, Dec 12 2021 *)

Formula

G.f.: Sum_{k>=0} x^k/Product_{i=1..k} (1-x^(2*i))^2.

Extensions

More terms from Emeric Deutsch, Aug 24 2007