A130780 Number of partitions of n such that number of odd parts is greater than or equal to number of even parts.
1, 1, 1, 3, 3, 6, 8, 12, 16, 23, 32, 42, 58, 75, 102, 131, 173, 220, 288, 363, 466, 587, 743, 929, 1164, 1448, 1797, 2224, 2738, 3368, 4122, 5042, 6133, 7466, 9035, 10941, 13184, 15888, 19064, 22876, 27343
Offset: 0
Examples
a(5)=6 because we have 5,41,32,311,211 and 11111 (221 does not qualify).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
g:=sum(x^k/(product((1-x^(2*i))^2,i=1..k)),k=0..50): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=1..40); # Emeric Deutsch, Aug 24 2007 # second Maple program: b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>=0, 1, 0), `if`(i<1, 0, b(n, i-1, t)+ `if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1))))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..80); # Alois P. Heinz, Mar 30 2014
-
Mathematica
$RecursionLimit = 1000; b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t >= 0, 1, 0], If[i<1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t + (2*Mod[i, 2]-1)]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, May 12 2015, after Alois P. Heinz *) opgQ[n_]:=Module[{len=Length[n],op},op=Length[Select[n,OddQ]];op>= len-op]; Table[Count[IntegerPartitions[n],?(opgQ)],{n,0,50}] (* _Harvey P. Dale, Dec 12 2021 *)
Formula
G.f.: Sum_{k>=0} x^k/Product_{i=1..k} (1-x^(2*i))^2.
Extensions
More terms from Emeric Deutsch, Aug 24 2007
Comments